K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) y=√5−m.(x−1)=√5−m.x−√5−my=5−m.(x−1)=5−m.x−5−m.

Hàm số đã cho là hàm số bậc nhất khi √5−m≠05−m≠0. Muốn vậy 5−m>05−m>0 hay m<5m<5.

b) Hàm số đã cho là hàm số bậc nhất khi

m+1m−1≠0m+1m−1≠0 tức là m+1≠0m+1≠0 và m−1≠0m−1≠0. Suy ra m≠±1m≠±1.

10 tháng 6 2021

a, \(y=\sqrt{5-m}\left(x-1\right)=\sqrt{5-m}x-\sqrt{5-m}\)

Để hàm số trên là ham số bậc nhất khi 

\(\sqrt{5-m}>0\Leftrightarrow5-m>0\Leftrightarrow m< 5\)

b, \(y=\frac{m+1}{m-1}x+3,5\)

Để hàm số trên là hàm số bậc nhất khi \(m-1\ne0\)và \(m+1>0\)

\(\Leftrightarrow m\ne1;m>-1\)

Thay x =1 và y =2,5 vào hàm số bậc nhất y =ax +3 ta có:

2,5=a + 3

=> a= -0,5

vậy a = -0,5

10 tháng 6 2021

Thay x = 1 ; y = 2,5 vào hàm số trên ta được 

\(a+3=2,5\Leftrightarrow a=-0,5\)

Vậy với x = 1 ; y = 2,5 thì a = -0,5 

Gọi hình chữ nhật ban đầu là ABCDABCD có các cạnh AB=30cm,BC=20cmAB=30cm,BC=20cm.

Sau khi bớt mỗi cạnh của hình chữ nhật đi x(cm)x(cm), ta được hình chữ nhật mới là A′B′C′DA′B′C′D có các cạnh

A′B′=30−x(cm)A′B′=30−x(cm)

B′C′=20−x(cm)B′C′=20−x(cm)

Với yy là chu vi của hình chữ nhật A'B'C'D, ta có: y=2[(30−x)+(20−x)]y=2[(30−x)+(20−x)]

Rút gọn được y=−4x+100y=−4x+100.

5 tháng 7 2021

 

Gọi hình chữ nhật ban đầu là ABCDABCD có các cạnh AB=30 cm, BC=20 cmAB=30cm,BC=20cm.

Sau khi bớt mỗi cạnh của hình chữ nhật đi x(cm)x(cm), ta được hình chữ nhật mới là A^{\prime} B^{\prime} C^{\prime} DABCD có các cạnh

A^{\prime} B^{\prime}=30-x(cm)AB=30x(cm)

B^{\prime} C^{\prime}=20-x(cm)BC=20x(cm)

Với yy là chu vi của hình chữ nhật A'B'C'D, ta có: y=2[(30-x)+(20-x)]y=2[(30x)+(20x)]

Rút gọn được y=-4 x+100y=4x+100.

a, hàm số bậc nhất y = (m-2)x +3 đồng biến <=> m-2 > 0

                                                                         <=> m >2

b,hàm số bậc nhất  y =(m-2)x +3 nghịch biến <=> m - 2 <0

                                                                            <=> m < 2  

10 tháng 6 2021

a, Để hàm số trên đồng biến khi

\(m-2>0\Leftrightarrow m>2\)

b, Để hàm số trên nghịch biến khi 

\(m-2< 0\Leftrightarrow m< 2\)

a) y=1−5xy=1−5x là hàm số bậc nhất, có a=−5a=−5 và b=1b=1, là hàm số nghịch biến trên RR.

b) y=−0,5xy=−0,5x là hàm số bậc nhất, có a=−0,5a=−0,5 và b=0b=0, là hàm số nghịch biến trên RR.

c) y=√2(x−1)+√3=√2x+√3−√2y=2(x−1)+3=2x+3−2 là hàm số bậc nhất, có a=√2a=2 và b=√3−√2b=3−2, là hàm số đồng biến trên RR.

d) y=2x2+3y=2x2+3 không phải là hàm số bậc nhất.

5 tháng 7 2021

B

9 tháng 6 2021

Câu 1 : x = 5

Câu 2 : x = 0 hoặc x = -1

Câu 3 : x = 3

- Phong cách sống của Bác là phong cách sống giản dị nhưng lại vô cùng thanh cao:

    + Phong cách sống của Bác không phải là một cách tự thần thánh hóa, tự làm cho khác đời, hơn đời

    + Phong cách sống của Bác chính là phong cách sống với cái đẹp chính là sự giản dị, tự nhiên

        ⇒ Phong cách Hồ Chí Minh là phong cách sống mang hồn dân tộc sợi nhắc đến phong cách của các vị hiền triết trong lịch sử dân tộc như Nguyến Trãi, Nguyễn Bỉnh Khiêm.

9 tháng 6 2021

 Văn bản kết hợp giữa kể và bình luận một cách tự nhiên, chọn lọc những chi tiết tiêu biểu, đan xen thơ, dùng từ Hán Việt gợi sự gần gũi; sử dụng nghệ thuật đối lập để làm nổi bật ý: Vĩ nhân mà giản dụ, gần gũi, am hiểu mọi nền văn hóa nhân loại mà lại rất dân tộc, rất Việt Nam

10 tháng 6 2021

a, Với a > 0 ; \(a\ne1\)

\(P=\left(\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{2}{a-1}\right)\)

\(=\left(\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\left(\frac{a\left(\sqrt{a}-1\right)-\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right):\left(\sqrt{a}-1\right)\)

\(=\left(\frac{a\sqrt{a}-a-\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right).\frac{1}{\sqrt{a}-1}\)

\(=\left(\frac{a\sqrt{a}-a-\sqrt{a}-1}{a\sqrt{a}-\sqrt{a}}\right).\frac{1}{\sqrt{a}-1}\)bạn kiểm tra đề lại nhé

gợi ý b ; c thì rút gọn xong mới làm đc

b, \(a=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\)

rồi thay vào biểu thức đã rút gọn nhé