Đây nhá <333
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^4+2x^3+3x^2+2x+1\)
\(=x^4+2x^3+x^2+x^2+x^2+2x+1\)
\(=x^2\left(x+1\right)^2+x^2+\left(x+1\right)^2\ge0\)
Dấu \(=\)khi \(\hept{\begin{cases}x\left(x+1\right)=0\\x=0\\x+1=0\end{cases}}\)không xảy ra.
Do đó \(A>0\).
a, \(\left(2x-1\right)^2-x\left(x-3\right)=1\Leftrightarrow4x^2-4x+1-x^2+3x=1\)
\(\Leftrightarrow3x^2-x=0\Leftrightarrow x\left(3x-1\right)=0\Leftrightarrow x=0;x=\frac{1}{3}\)
Vậy tập nghiệm phương trình là S = { 0 ; 1/3 }
b, \(\frac{1}{x+2}+\frac{3}{3-x}=\frac{5x}{x^2-x-6}\)ĐK : \(x\ne-2;3\)
\(\Leftrightarrow\frac{x-3-3\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}=\frac{5x}{\left(x-3\right)\left(x+2\right)}\Rightarrow-2x-9=5x\)
\(\Leftrightarrow-7x=9\Leftrightarrow x=-\frac{9}{7}\)( tm )
Vậy tập nghiệm của phương trình là S = { -9/7 }
c, \(\frac{x+3}{5}-\frac{3-x}{3}>\frac{2x-3}{2}\)
\(\Leftrightarrow\frac{3x+9-15+5x}{15}-\frac{2x-3}{2}>0\)
\(\Leftrightarrow\frac{8x-6}{15}-\frac{2x-3}{2}>0\Leftrightarrow\frac{16x-12-30x+45}{30}>0\)
\(\Rightarrow-14x+33>0\)vì 30 > 0
\(\Leftrightarrow x< \frac{33}{14}\)Vậy tập nghiệm BFT là S = { x | x < 33/14 }
(4x2 - 4x + 1) - (x + 1)2
=(2x - 1)2 - (x + 1)2
= (2x - 1 + x + 1)(2x - 1 - x - 1)
= 3x(x - 2)
\(\left(4x^2-4x+1\right)-\left(x+1\right)^2\)
\(=\left(2x-1\right)^2-\left(x+1\right)^2\)
\(=\left(2x-1-x-1\right)\left(2x-1+x+1\right)\)
\(=\left(x-2\right)3x\)
a) ĐKXĐ : \(x\ne\pm1\)
Khi đó \(\frac{3x-2}{x-1}-\frac{x+3}{x+1}=2\)
=> \(\frac{\left(3x-2\right)\left(x+1\right)-\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
=> (3x - 2)(x + 1) - (x + 3)(x - 1) = 2(x - 1)(x + 1)
<=> 3x2 + x - 2 - (x2 + 2x - 3) = 2x2 - 2
<=> 2x2 - x + 1 = 2x2 - 2
<=> x = 3 (tm)
Vạy x = 3 là nghiệm phương trình
b) 4x2 - 1 = (x - 5)(1 - 2x)
<=> (2x - 1)(2x +1) = -(x - 5)(2x - 1)
<=> (2x - 1)(2x + 1) + (x - 5)(2x - 1) = 0
<=> (2x - 1)(2x + 1 + x - 5) = 0
<=> (2x - 1)(3x - 4) = 0
<=> \(\orbr{\begin{cases}2x-1=0\\3x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{4}{3}\end{cases}}\)
Vậy \(x\in\left\{\frac{1}{2};\frac{4}{3}\right\}\)là nghiệm phương trình
c) \(\frac{x-3}{3}-\frac{2x-1}{2}>2\)
<=> \(\frac{2\left(x-3\right)-3\left(2x-1\right)}{6}>\frac{12}{6}\)
<=> 2(x - 3) - 3(2x - 1) > 12
<=> 2x - 6 - 6x + 3 > 12
<=> -4x > 15
=> x < -15/4
Vậy x < -15/4 là nghiệm bất phương trình
a, 4x2 - 49 = 0
⇔⇔ (2x)2 - 72 = 0
⇔⇔ (2x - 7)(2x + 7) = 0
⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72
b, x2 + 36 = 12x
⇔⇔ x2 + 36 - 12x = 0
⇔⇔ x2 - 2.x.6 + 62 = 0
⇔⇔ (x - 6)2 = 0
⇔⇔ x = 6
e, (x - 2)2 - 16 = 0
⇔⇔ (x - 2)2 - 42 = 0
⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0
⇔⇔ (x - 6)(x + 2) = 0
⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2
f, x2 - 5x -14 = 0
⇔⇔ x2 + 2x - 7x -14 = 0
⇔⇔ x(x + 2) - 7(x + 2) = 0
⇔⇔ (x + 2)(x - 7) = 0
⇔{x+2=0x−7=0⇔{x=−2x=7
tự kết luận nhé
a, \(x\left(x-3\right)-2x=\left(x-2\right)^2\)
\(\Leftrightarrow x^2-5x=x^2-4x+4\Leftrightarrow-x=4\Leftrightarrow x=-4\)
b, \(\frac{3x-4}{x+7}-\frac{2x}{49-x^2}=\frac{3x}{x-7}\)ĐK : \(x\ne\pm7\)
\(\Leftrightarrow\frac{\left(3x-4\right)\left(x-7\right)+2x}{\left(x+7\right)\left(x-7\right)}=\frac{3x\left(x+7\right)}{\left(x+7\right)\left(x-7\right)}\)
\(\Rightarrow3x^2-25x+28+2x=3x^2+21x\Leftrightarrow-34x=-28\Leftrightarrow x=\frac{28}{34}=\frac{14}{17}\)( tm )
c, \(\frac{4x-1}{2}-\frac{2+3x}{4}\ge\frac{x+1}{3}-\frac{1}{6}\)
\(\Leftrightarrow\frac{8x-2-2-3x}{4}-\frac{2x+2-1}{6}\ge0\)
\(\Leftrightarrow\frac{5x-4}{4}-\frac{2x+1}{6}\ge0\Leftrightarrow\frac{15x-12-4x-2}{12}\ge0\)
\(\Rightarrow11x-14\ge0\Leftrightarrow x\ge\frac{14}{11}\)vì 12 > = 0
d, \(\left(1-2x\right)x+3x^2< x^2-7x+8\Leftrightarrow x-2x^2+3x^2-x^2+7x-8< 0\)
\(\Leftrightarrow8x-8< 0\Leftrightarrow x>1\)vì 8 > 0
Dạ vâng