M=x^{2}+5y^{2}-4xy+2x-8y+2022
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2\) - 3\(x\) - 4 = 0
(\(x^2\) + \(x\)) - (4\(x\) + 4) = 0
\(x\).(\(x\) + 1) - 4.(\(x\) + 1) = 0
(\(x\) + 1).(\(x\) - 4) = 0
\(\left[{}\begin{matrix}x+1=0\\x-4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)
Vậy \(x\in\) {-1; 4}
Lời giải:
a. Tứ giác $ANIM$ có $\widehat{A}=\widehat{M}=\widehat{N}=90^0$ nên $ANIM$ là hình chữ nhật.
b.
Do $ANIM$ là hình chữ nhật nên $IN=AM(1)$
$IM\perp AB, AB\perp AC\Rightarrow IM\parallel AC$
$\Rightarrow \frac{BM}{MA}=\frac{BI}{IC}=1$ (định lý Talet)
$\Rightarrow BM=MA(2)$
Từ $(1); (2)\Rightarrow IN=BM$
c.
Xét tam giác $AEM$ và $AIM$ có:
$AM$ chung
$EM=MI$
$\widehat{EMA}=\widehat{IMA}=90^0$
$\Rightarrow \triangle AEM=\triangle AIM$ (c.g.c)
$\Rightarrow \widehat{EAM}=\widehat{IAM}(1)$
Tương tự: $\triangle IAN=\triangle FAN$ (c.g.c)
$\Rightarrow \widehat{IAN}=\widehat{FAN}(2)$
Từ $(1); (2)\Rightarrow \widehat{EAM}+\widehat{FAN}=\widehat{IAM}+\widehat{IAN}=\widehat{MAN}=90^0$
$\Rightarrow \widehat{EAF}=\widehat{EAM}+\widehat{FAN}+\widehat{MAN}=90^0+90^0=180^0$
$\Rightarrow E, A, F$ thẳng hàng.
Lời giải:
Theo đề thì AB là đường trung bình ứng với đáy NP của tam giác $MNQ$.
$\Rightarrow AB=\frac{NP}{2}=\frac{18}{2}=9$ (cm)
Cần bổ sung thêm điều kiện về $x$ để tính min bạn nhé. Bạn xem lại đề.
A B C M N O
Hai tam giác ACM và tg BCM có chung đường cao từ C->AB nên
\(\dfrac{S_{ACM}}{S_{BCM}}=\dfrac{AM}{BM}=1\Rightarrow S_{ACM}=S_{BCM}=\dfrac{S_{ABC}}{2}=\dfrac{70}{2}=35cm^2\)
Hai tg BCN và tg ABN có chung đường cao từ B->AC nên
\(\dfrac{S_{BCN}}{S_{ABN}}=\dfrac{CN}{NA}=\dfrac{2}{3}\) mà \(S_{BCN}+S_{ABN}=S_{ABC}=70cm^2\)
\(\Rightarrow S_{BCN}=2x\dfrac{S_{ABC}}{2+3}=2x\dfrac{70}{5}=28cm^2\)
\(\Rightarrow S_{ABN}=S_{ABC}-S_{BCN}=70-28=42cm^2\)
Hai tg AMN và tg BMN có chung đường cao từ N->AB nên
\(\dfrac{S_{AMN}}{S_{BMN}}=\dfrac{AM}{BM}=1\Rightarrow S_{AMN}=S_{BMN}=\dfrac{S_{ABN}}{2}=\dfrac{42}{2}=21cm^2\)
Hai tam giác BMN và tam giác BCN có chung BN nên
\(\dfrac{S_{BMN}}{S_{BCN}}=\) đường cao từ M->BN / đường cao từ C->BN \(=\dfrac{21}{28}=\dfrac{3}{4}\)
Hai tg BOM và tam giác BOC có chung BO nên
\(\dfrac{S_{BOM}}{S_{BOC}}=\) đường cao từ M->BN / đường cao từ C->BN \(=\dfrac{3}{4}\)
Mà \(S_{BOM}+S_{BOC}=S_{BCM}=28cm^2\)
\(\Rightarrow S_{BOC}=4x\dfrac{S_{BCN}}{4+3}=4x\dfrac{28}{7}=16cm^2\)
Sorry!
Mà \(S_{BOM}+S_{BOC}=S_{BCM}=35cm^2\)
\(\Rightarrow S_{BOC}=4x\dfrac{S_{BCM}}{4+3}=4x\dfrac{35}{7}=20cm^2\)
Đề yêu cầu gì thế bạn?
tổng của 2 số là 2345. Hãy tìm hai số đó