Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay a=-1 và b=2 vào biểu thức, ta được:
\(\left(-1\right)^2-6\cdot2+7=1-12+7=8-12=-4\)
b: A(x)+B(x)
\(=2x^3+x^2-5x+3+3x^3+4x^2-6x+7\)
\(=5x^3+5x^2-11x+10\)
A(x)-B(x)
\(=2x^3+x^2-5x+3-3x^3-4x^2+6x-7\)
\(=-x^3-3x^2+x-4\)
c: (3x-2)(x+1)
\(=3x^2+3x-2x-2\)
\(=3x^2+x-2\)
a: Xét ΔADB và ΔADE có
AD chung
\(\widehat{DAB}=\widehat{DAE}\)
AB=AE
DO đó: ΔADB=ΔADE
b: ta có: ΔADB=ΔADE
=>DB=DE
c: Ta có: ΔADB=ΔADE
=>\(\widehat{ABD}=\widehat{AED}\)
Xét ΔABC và ΔAEK có
\(\widehat{ABC}=\widehat{AEK}\)
AB=AE
\(\widehat{BAC}\) chung
Do đó: ΔABC=ΔAEK
=>AC=AK
=>ΔACK cân tại A
Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
BE=BA
\(\widehat{EBF}\) chung
Do đó: ΔBEF=ΔBAC
=>BF=BC
Ta có: BF=BA+AF
BC=BE+EC
mà BF=BC và BA=BE
nên AF=EC
a: M(x)=A(x)+B(x)
\(=x^2+3x-9+x^2-2x+1\)
\(=2x^2+x-8\)
N(x)=A(x)-B(x)
\(=x^2+3x-9-x^2+2x-1\)
=5x-10
b: N(x)=5x-10
bậc là 1
Hệ số cao nhất là 5
\(M\left(x\right)=2x^2+x-8\)
Bậc là 2
Hệ số cao nhất là 2
c: P(x)=M(x)*N(x)
\(=\left(2x^2+x-8\right)\left(5x-10\right)\)
\(=10x^3-20x^2+5x^2-10x-40x+80\)
\(=10x^3-15x^2-50x+80\)
a: Xét ΔBAH vuông tại A và ΔBDH vuông tại D có
BH chung
BA=BD
Do đó: ΔBAH=ΔBDH
b: Xét ΔBDM vuông tại D và ΔBAC vuông tại A có
BD=BA
\(\widehat{DBM}\) chung
Do đó: ΔBDM=ΔBAC
=>BM=BC
a: \(3x\left(2x^2+x-1\right)\)
\(=3x\cdot2x^2+3x\cdot x-3x\cdot1\)
\(=6x^3+3x^2-3x\)
b: Đặt \(\dfrac{a}{c}=\dfrac{c}{b}=k\)
=>\(\left\{{}\begin{matrix}c=bk\\a=ck=bk\cdot k=bk^2\end{matrix}\right.\)
\(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{\left(bk^2\right)^2+\left(bk\right)^2}{\left(bk\right)^2+b^2}=\dfrac{b^2k^4+b^2k^2}{b^2k^2+b^2}\)
\(=\dfrac{b^2k^2\left(k^2+1\right)}{b^2\left(k^2+1\right)}=k^2\)
\(\dfrac{a}{b}=\dfrac{bk^2}{b}=k^2\)
Do đó: \(\dfrac{a}{b}=\dfrac{a^2+c^2}{b^2+c^2}\)
Lấy ba điểm A, B, C trên phần còn lại của cái đĩa tạo thành tam giác
Vẽ hai đường trung trực của tam giác tạo thành từ ba điểm đó
Giao điểm O của hai đường trung trực là tâm của cái đĩa
Bán kính cái đĩa cần tìm là OA.