Cho \(x,y>0\)và \(x+y\le2\)Tim Min \(Q=\left(x+\frac{2}{x}\right)^2+\left(y+\frac{2}{y}\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x+\frac{2}{x}\right)^2+\left(y+\frac{2}{y}\right)^2=x^2+y^2+\frac{4}{x^2}+\frac{4}{y^2}+4+4\)
\(=\left(x^2+\frac{1}{x^2}\right)+\left(y^2+\frac{1}{y^2}\right)+\left(\frac{3}{x^2}+3x+3x\right)+\left(\frac{3}{y^2}+3y+3y\right)-6\left(x+y\right)+8\)
\(\ge2+2+9+9-6.2+8=18\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(C=x^2+y^2+\dfrac{4}{x^2}+\dfrac{4}{y^2}\)
\(=\left(x^2+\dfrac{1}{x^2}\right)+\left(y^2+\dfrac{1}{y^2}\right)+3\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)
Áp dụng BĐT Cô si cho 2 số dương, ta có:
\(C\ge2\sqrt{x^2.\dfrac{1}{x^2}}+2\sqrt{y^2.\dfrac{1}{y^2}}+3\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)
\(=4+3\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)
Áp dụng BĐT Svácxơ, ta có:
\(C\ge4+3.\dfrac{4}{x^2+y^2}=4+\dfrac{12}{x^2+y^2}\)
\(C\ge4+\dfrac{12}{2}=4+6=10\)\(\left(x^2+y^2\le2\right)\)
Dấu "=" \(\Leftrightarrow x=y=1\)
\(C=\left(x^2+\dfrac{1}{x^2}\right)+\left(y^2+\dfrac{1}{y^2}\right)+3\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)
\(C\ge2\sqrt{\dfrac{x^2}{x^2}}+2\sqrt{\dfrac{y^2}{y^2}}+\dfrac{3}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge4+\dfrac{3}{2}\left(\dfrac{4}{x+y}\right)^2\ge4+\dfrac{3}{2}.\left(\dfrac{4}{2}\right)^2=10\)
\(C_{min}=10\) khi \(x=y=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{3x^2}{2}+y^2+z^2+yz=1\)
\(\Leftrightarrow\dfrac{3}{2}x^2+\left(y+\dfrac{z}{2}\right)^2+\dfrac{3z^2}{4}=1\)
Áp dụng BĐT Bunhiacopxki:
\(\left(\dfrac{2}{3}+1+\dfrac{1}{3}\right)\left(\dfrac{3}{2}x^2+\left(y+\dfrac{z}{2}\right)^2+\dfrac{3z^2}{4}\right)\ge\left(\sqrt{\dfrac{2}{3}.\dfrac{3}{2}x^2}+\sqrt{1.\left(y+\dfrac{z}{2}\right)^2}+\sqrt{\dfrac{1}{3}.\dfrac{3z^2}{4}}\right)^2\)
\(\Leftrightarrow2.1\ge\left(x+y+\dfrac{z}{2}+\dfrac{z}{2}\right)^2=\left(x+y+z\right)^2\)
\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)
\(\frac{3x^2}{2}+y^2+z^2+yz=1\)
\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
\(\Rightarrow\left(x+y+z\right)^2\le2\)
\(\Leftrightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x+y\le2\Rightarrow-\left(x+y\right)\ge-2\)
Do đó:
\(A=2\left(x+\dfrac{1}{x}\right)+2\left(y+\dfrac{1}{y}\right)-\left(x+y\right)\ge2.2\sqrt{x.\dfrac{1}{x}}+2.2\sqrt{y.\dfrac{1}{y}}-2=6\)
\(A_{min}=6\) khi \(x=y=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi vận tốc xe đi từ A đến B là x ( x> 0 )
xe đi từ B đến A là x - 3
Theo bài ra ta có pt \(2x+2x-6=46\Leftrightarrow4x=52\Leftrightarrow x=13\left(tm\right)\)
Vậy vận tốc xe đi từ A đến B là 13 km/h
vận tốc xe đi từ B đến A là 10 km/h
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(2y=a\)thì ta được
\(P=\frac{1}{x^2+a^2}+\frac{1}{xa}=\left(\frac{1}{x^2+a^2}+\frac{1}{2xa}\right)+\frac{1}{2xa}\)
\(\ge\frac{4}{x^2+a^2+2ax}+\frac{2}{\left(x+a\right)^2}=\frac{6}{\left(x+a\right)^2}\ge\frac{6}{4}=\frac{3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(Q=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\left(\dfrac{1}{ab}+ab\right)+\dfrac{1}{2ab}\)
\(Q\ge\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{ab}{ab}}+\dfrac{2}{\left(a+b\right)^2}\)
\(Q\ge\dfrac{6}{\left(a+b\right)^2}+2\ge\dfrac{6}{2^2}+2=\dfrac{7}{2}\)
\(Q_{min}=\dfrac{7}{2}\) khi \(a=b=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
tl
bn tìm câu hỏi tương tự nó có đáp án đầy đủ đấy
HT
###
TL
Câu 1 tính chất vật lý : ko màu ko mù vị , ít tan trong nước , nặng hơn kk
. hóa lỏng ở -183oC có màu xanh nhạt
tính chất hóa học : rất hoát động ở nhiệt độ cao . có thể tác dụng với phi kim , kim loại và hợp chất
VD :td với phi kim S+O2 -t--> SO2
VD :td với kim loại 3Fe+ 2O2 -t---> Fe3O4
bài 2 :
- thu khí O2 ở bằng cách đun nóng nhuengx hợp chất giàu O2 và dễ bị phân hủy như KMnO4 . KClO3
pthh : 2KMnO4 --t--> K2MnO4 + MnO2 + O2
- thu khí oxi bằng cách đẩy kk và đẩy nước
~HT~
\(Q=\left(x+\dfrac{2}{x}\right)^2+\left(y+\dfrac{2}{y}\right)^2\ge\dfrac{1}{2}\left(x+\dfrac{2}{x}+y+\dfrac{2}{y}\right)^2\)
\(Q\ge\dfrac{1}{2}\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2\sqrt{\dfrac{x}{x}}+2\sqrt{\dfrac{y}{y}}+\dfrac{4}{x+y}\right)^2\)
\(Q\ge\dfrac{1}{2}\left(4+\dfrac{4}{x+y}\right)^2\ge\dfrac{1}{2}\left(4+\dfrac{4}{2}\right)^2=18\)
\(Q_{min}=18\) khi \(x=y=1\)
22+3000