Dùng khí CO để khử oxit sắt từ và hidro để khử sắt (III) oxit,khối lượng sắt thu đc là 266g .Khí sinh ra từ các phản ứng trên đc dẫn vào bình đựng nước vôi trong dư thấy xuất hiện 200g kết tủa trắng a.Tính V các khí CO và H2(đktc) đã tham gia phản ứng b.Tính khối lượng mỗi oxit đã tham gia phản ứng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Dự đoán dấu "=" xảy ra khi \(a=b=c=1\)
Khi đó \(\frac{a^4}{b+2}=\frac{1}{3}\)
Ta cần ghép \(\frac{a^4}{b+2}\)với hạng tử \(k\left(b+2\right)\)thỏa mãn khi Cô-si thì dấu "=" xảy ra khi \(a=b=1\)
Lại có \(b+2=3\)
Đồng thời khi Cô-si dấu "=" xảy ra khi \(\frac{a^4}{b+2}=k\left(b+2\right)\)hay \(\frac{1}{3}=k.3\)\(\Leftrightarrow k=\frac{1}{9}\)
Áp dụng BĐT Cô-si cho 2 số dương \(\frac{a^4}{b+2}\)và \(\frac{b+2}{9}\), ta có:
\(\frac{a^4}{b+2}+\text{}\frac{b+2}{9}\ge2\sqrt{\frac{a^4}{b+2}.\frac{b+2}{9}}=\frac{2a^2}{3}\)
Tương tự, ta có \(\frac{b^4}{c+2}+\text{}\frac{c+2}{9}\ge2\sqrt{\frac{b^4}{c+2}.\frac{c+2}{9}}=\frac{2b^2}{3}\)và
\(\frac{c^4}{a+2}+\text{}\frac{a+2}{9}\ge2\sqrt{\frac{c^4}{a+2}.\frac{a+2}{9}}=\frac{2c^2}{3}\)
CỘng vế theo vế từng BĐT, ta được \(P+\frac{a+2+b+2+c+2}{9}\ge\frac{2\left(a^2+b^2+c^2\right)}{3}\)
\(\Leftrightarrow P+\frac{\left(a+b+c\right)+6}{9}\ge2\)(vì \(a^2+b^2+c^2=3\)) \(\Leftrightarrow P\ge2-\frac{\left(a+b+c\right)+6}{9}\)(1)
Ta chứng minh BĐT phụ \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)(với \(a,b,c>0\))
Thật vậy, BĐT này \(\Leftrightarrow\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\le3a^2+3b^2+3c^2\)\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)
Vậy BĐT phụ được chứng minh \(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=\sqrt{3.3}=3\)(2)
Từ (1) và (2) \(\Rightarrow P\ge2-\frac{3+6}{9}=1\)\(\Rightarrow min_P=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT Cô-si:
\(a^2+3\ge2\sqrt{3a^2}=2\sqrt{3}a\)
Tương tự: \(b^2+3\ge2\sqrt{3}b\) ; \(c^2+3\ge2\sqrt{3}c\)
Cộng vế: \(a^2+b^2+c^2+9\ge2\sqrt{3}\left(a+b+c\right)\)
\(\Rightarrow a+b+c\le\dfrac{a^2+b^2+c^2+9}{2\sqrt{3}}=\dfrac{9+9}{2\sqrt{3}}=3\sqrt{3}\)
\(\Rightarrow-\left(a+b+c\right)\ge-3\sqrt{3}\)
Tiếp tục áp dụng BĐT Cô-si:
\(\dfrac{a^4}{b+2}+\dfrac{9}{\left(2+\sqrt{3}\right)^2}\left(b+2\right)\ge2\sqrt{\dfrac{9a^4\left(b+2\right)}{\left(b+2\right)\left(2+\sqrt{3}\right)^2}}=\dfrac{6a^2}{2+\sqrt{3}}\)
Tương tự:
\(\dfrac{b^4}{c+2}+\dfrac{9}{\left(2+\sqrt{3}\right)^2}\left(c+2\right)\ge\dfrac{6b^2}{2+\sqrt{3}}\)
\(\dfrac{c^4}{a+2}+\dfrac{9}{\left(2+\sqrt{3}\right)}\left(a+2\right)\ge\dfrac{6c^2}{2+\sqrt{3}}\)
Cộng vế:
\(P+\dfrac{9}{\left(2+\sqrt{3}\right)^2}\left(a+b+c+6\right)\ge\dfrac{6}{2+\sqrt{3}}\left(a^2+b^2+c^2\right)=\dfrac{54}{2+\sqrt{3}}\)
\(\Rightarrow P\ge\dfrac{54}{2+\sqrt{3}}-\dfrac{9}{\left(2+\sqrt{3}\right)^2}\left(a+b+c+6\right)\ge\dfrac{54}{2+\sqrt{3}}-\dfrac{9}{\left(2+\sqrt{3}\right)^2}.\left(3\sqrt{3}+6\right)\)
\(\Rightarrow P\ge\dfrac{27}{2+\sqrt{3}}=27\left(2-\sqrt{3}\right)\)
Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT Svácxơ, ta có:
\(\dfrac{a^2}{b+1}+\dfrac{b^2}{c+1}+\dfrac{c^2}{a+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{81}{12}=\dfrac{27}{4}\)
Dấu "=" ⇔ a=b=c=3
Áp dụng BĐT Cô-si:
\(\dfrac{a^2}{b+1}+\dfrac{9}{16}\left(b+1\right)\ge2\sqrt{\dfrac{9a^2\left(b+1\right)}{16\left(b+1\right)}}=\dfrac{3a}{2}\)
Tương tự: \(\dfrac{b^2}{c+1}+\dfrac{9}{16}\left(c+1\right)\ge\dfrac{3b}{2}\) ; \(\dfrac{c^2}{a+1}+\dfrac{9}{16}\left(a+1\right)\ge\dfrac{3c}{2}\)
Cộng vế:
\(VT+\dfrac{9}{16}\left(a+b+c+3\right)\ge\dfrac{3}{2}\left(a+b+c\right)\)
\(\Leftrightarrow VT+\dfrac{27}{4}\ge\dfrac{27}{2}\Rightarrow VT\ge\dfrac{27}{4}\)
Dấu "=" xảy ra khi \(a=b=c=3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{a^2}{b+1}+\dfrac{b^2}{c+1}+\dfrac{c^2}{a+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{9^2}{9+3}=\dfrac{27}{4}\)
Dấu "=" xảy ra khi \(a=b=c=3\)
Chứng minh BĐT \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\) với \(\left(a,b,c>0\right)\)
Trước hết ta cm \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\)\(\Leftrightarrow\frac{x^2b+y^2a}{ab}\ge\frac{x^2+y^2+2xy}{a+b}\)\(\Leftrightarrow\left(x^2b+y^2a\right)\left(a+b\right)\ge ab\left(x^2+y^2+2xy\right)\)(vì tất cả các tử số và mẫu số đều dương)
\(\Leftrightarrow x^2ab+y^2ab+x^2b^2+y^2a^2\ge abx^2+aby^2+2abxy\)\(\Leftrightarrow x^2b^2-2abxy+y^2a^2\ge0\)\(\Leftrightarrow\left(xb-ya\right)^2\ge0\)(luôn đúng)
Vậy BĐT được cm
Để có đpcm thì ta chỉ cần áp dụng 2 lần BĐT ta vừa chứng minh xong:
\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y\right)^2}{a+b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình sẽ chon hoá trị cao nhất của P bạn nhé :)
PTHH:
\(4P+3O_2\underrightarrow{t^o}2P_2O_3\\ P_2O_3+O_2\underrightarrow{t^o}P_2O_5\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi quãng đường AB là x (km)
Thời gian xe máy đi từ A đến B là: x/40(h)
Thời gian xe máy đi từ B về A là: x/50(h)
Đổi 45 phút=3/4 h
Ta có phương trình:
x/40 -x/50 = 3/4
=> 5x - 4x = 150
<=> x = 150
Vậy quãng đường AB dài 150 km
bn tham khảo
TL:
Tham khảo nhé:
@@@@@@@@@@@@@@@@@@@@
@tuantuthan
HT