Cho nửa \(\left(O\right)\), đường kính \(AB=2R\) và dây \(AC=R\). Gọi \(K\) là trung điểm của \(BC\). Qua \(B\) vẽ tiếp tuyến \(Bx\) với \(\left(O\right)\), tiếp tuyến này cắt tia \(OK\) tại \(D\).
\(a\)) Chứng minh \(DC\) là tiếp tuyến của \(\left(O\right)\).
\(b\)) Tia \(OD\) cắt \(\left(O\right)\) ở \(M\). Chứng minh \(OBMC\) là hình thoi.
\(c\)) Vẽ \(CH\) vuông góc với \(AB\) tại \(H\) và gọi \(I\) là trung điểm của \(CH\). Tiếp tuyến tại \(A\) của \(\left(O\right)\) cắt tia \(BI\) tại \(E\). Chứng minh \(E,C,D\) thẳng hàng.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HP
0