K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

nhờ giải giupws em với a 1. Phân tích các đa thức sau thành nhân tử: a)     5x2 – 10xy b)    3x(x – y)  –  6(x – y) c)     2x(x – y) – 4y(y – x) d)    9x2 – 9y2 e)     x2 – xy – x + y f)      xy – xz – y + z 2. Phân tích các đa thức sau thành nhân tử:  a)a2 – 4b2                                        b) x2 – y2 + 6y -...
Đọc tiếp

nhờ giải giupws em với a

1. Phân tích các đa thức sau thành nhân tử:

a)     5x2 – 10xy

b)    3x(x – y)    6(x – y)

c)     2x(x – y) – 4y(y – x)

d)    9x2 – 9y2

e)     x2 – xy – x + y

f)      xy – xz – y + z

2. Phân tích các đa thức sau thành nhân tử:

 a)a2 – 4b2                                        b) x2 – y2 + 6y - 9                                         

c) (2a + b)2 – a2                     d) 16(x – 1)2 – 25(x + y)2

e)x2 + 10x + 25                f) 25x2 – 20xy + 4y2

      g)9x4 + 24x2 + 16             h) x3 – 125

      i)x6 – 1                            k) x3 + 15x2 + 75x + 125

3. Tìm x biết :

a) 3x2 + 8x = 0              b) 9x2 – 25 = 0          c) x3 – 16x = 0     d) x3 + x = 0.

4. Chứng minh rằng với mọi số nguyên a thì: a3 – a chia hết cho 6

 

1
19 tháng 12 2023

Bài `1`

\(a,5x^2-10xy=5x\left(x-2y\right)\\ b,3x\left(x-y\right)-6\left(x-y\right)=\left(x-y\right)\left(3x-6\right)\\ =3\left(x-y\right)\left(x-2\right)\\ c,2x\left(x-y\right)-4y\left(y-x\right)=2x\left(x-y\right)+4y\left(x-y\right)\\ =\left(x-y\right)\left(2x+4y\right)=2\left(x-y\right)\left(x+2y\right)\\ d,9x^2-9y^2=\left(3x\right)^2-\left(3y\right)^2=\left(3x-3y\right)\left(3x+3y\right)\\ f,xy-xz-y+z=\left(xy-xz\right)-\left(y-z\right)\\ =x\left(y-z\right)-\left(y-z\right)=\left(y-z\right)\left(x-1\right)\)

Bài `3`

\(a,3x^2+8x=0\\ \Leftrightarrow x\left(3x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\3x+8=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\3x=-8\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{8}{3}\end{matrix}\right.\)

\(b,9x^2-25=0\\ \Leftrightarrow\left(3x\right)^2-5^2=0\\ \Leftrightarrow\left(3x-5\right)\left(3x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x-5=0\\3x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=5\\3x=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)

\(c,x^3-16x=0\\ \Leftrightarrow x\left(x^2-16\right)=0\\ \Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

\(d,x^3+x=0\\ \Leftrightarrow x\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1\in\varnothing\\x=0\end{matrix}\right.\Rightarrow x=0\)

19 tháng 12 2023

a) (a - 2b)x(a + 2b)
b) x2-(y-3)2
 => (x-y+3)(x+y-3)
c) (2a + b - a)(2a + b + a)
=> (a+b)(3a+b)
d) (4(x - 1))2 - (5(x + y))2
⇔ (4x - 4 - 5x - 5y)(4x - 4 + 5x + 5y)
⇔ -(x + 5y + 4)(9x + 5y + -4)
e) (x + 5)2
f) (5x - 2y)2
h) (x - 5)(x2 + 5x + 25)

k) (x + 5)3

AH
Akai Haruma
Giáo viên
2 tháng 1 2024

Lời giải:
a. Xét tứ giác $ADHE$ có 3 góc vuông $\widehat{A}=\widehat{D}=\widehat{E}=90^0$ nên tứ giác $ADHE$ là hình chữ nhật.

b.

Xét tam giác vuông $BDH$ vuông tại $D$ có $DI$ là đường trung tuyến ứng với cạnh huyền $BH$ nên $DI=\frac{BH}{2}=IH$

$\Rightarrow DIH$ là tam giác vuông tại $I$

$\Rightarrow \widehat{IDH}=\widehat{IHD}$ (1)

$ADHE$ là hình chữ nhật nên $\widehat{HDE}=\widehat{HAE}=\widehat{HAC}$ (2)

Từ $(1); (2)\Rightarrow \widehat{IDH}+\widehat{HDE}=\widehat{IHD}+\widehat{HAC}$

$\Rightarrow \widehat{IDE}=\widehat{IHD}+\widehat{HAC}$.

Mà $\widehat{IHD}=\widehat{HCA}$ (2 góc đồng vị)

$\Rightarrow \widehat{IDE}=\widehat{HCA}+\widehat{HAC}=180^0-\widehat{AHC}=180^0-90^0=90^0$

$\Rightarrow DI\perp DE$

c. Tương tự phần a ta suy ra $DE\perp EK$

Vậy $DI\perp DE, EK\perp DE$

$\Rightarrow DI\parallel EK$ và $DI, EK$ cùng vuông góc với $DE$

$\Rightarrow DIKE$ là hình thang vuông.

d.

Có: $DI=\frac{BH}{2}\Rightarrow BH=2DI=2.1=2$ (cm) 

$EK=\frac{CH}{2}\Rightarrow CH=2EK=8$ (cm)

$\Rightarrow BC=BH+CH=2+8=10$ (cm)

$S_{ABC}=AH.BC:2=6.10:2=30$ (cm2)

AH
Akai Haruma
Giáo viên
2 tháng 1 2024

Hình vẽ:

19 tháng 12 2023

loading...  

Do BD là đường trung tuyến của ∆ABC (gt)

⇒ D là trung điểm của AC

Do CE là đường trung tuyến của ∆ABC (gt)

⇒ E là trung điểm của AB

⇒ DE là đường trung bình của ∆ABC

⇒ DE // BC và DE = BC : 2

⇒ BC = 2DE

Do DE // BC (cmt)

⇒ BCDE là hình thang

Do M là trung điểm của BE (gt)

N là trung điểm của CD (gt)

⇒ MN là đường trung bình của hình thang BCDE

⇒ MN // DE // BC và MN = (DE + BC) : 2

Do MN // DE (cmt)

⇒ MI // DE và NK // DE

∆BDE có:

MI // DE (cmt)

M là trung điểm của BE (gt)

⇒ I là trung điểm của BD

⇒ MI là đường trung bình của ∆BDE

⇒ MI = DE : 2   (1)

∆CDE có:

NK // DE (cmt)

N là trung điểm của CD (gt)

⇒ K là trung điểm của CE

⇒ NK là đường trung bình của ∆CDE

⇒ NK = DE : 2   (2)

Mà MI = DE : 2

⇒ MI = NK = DE : 2

⇒ MI + NK = DE

Ta có:

MN = (DE + BC) : 2

Mà BC = 2DE (cmt)

⇒ MN = (DE + 2DE) : 2

= DE + DE : 2

Lại có:

MN = MI + IK + NK

= (MI + NK) + IK

= DE + IK

⇒ DE + IK = DE + DE : 2

⇒ IK = DE : 2 (3)

Từ (1), (2) và (3) ⇒ MI = IK = KN

23 tháng 1 2024

Xét Δ���ΔBED có {��//����=��{MI//EDME=BM suy ra ��=��ID=IB.

Xét Δ���ΔCED có {��//����=��{NK//EDNC=ND suy ra ��=��KE=KC.

Suy ra ��=12��MI=21ED��=12��NK=21ED��=12��ED=21BC.

��=��−��=12��−12��=��−12��=12��IK=MKMI=21BC21DE=DE21DE=21DE.

Vậy ��=��=��MI=IK=KN.

19 tháng 12 2023

A B C M N G D E

a/

Xét tg ABC có

NA=NB; MA=MC => MN là đường trung bình của tg ABC => MN//BC

Xét tg GBC có

DG=DB; EG=EC => DE là đường trung bình của tg GBC => DE//BC

=> MN//DE (cùng // BC)

b/

Xét tg ABG có

NA=NB; DG=DB => ND là đường trung bình của tg ABG => ND//AG

Xét tg ACG có

MA=MC; EG=EC => ME là đường trung bình của tg ACG => ME//AG

=> ND//ME (cùng // với AG)

24 tháng 1 2024

a) Vì ��BM��CN là các đường trung tuyến của Δ���ΔABC nên ��=��MA=MC��=��NA=NB.

Do đó ��MN là đường trung bình của Δ ���Δ ABC, suy ra ��MN // ��BC. (1)

Ta có ��DE là đường trung bình của Δ ���Δ GBC nên ��DE // ��BC.  (2)

Từ (1) và (2) suy ra ��MN // ��DE.

b) Xét Δ ���Δ ABG, ta có ��ND là đường trung bình.

Xét Δ ���Δ ACG, ta có ��ME là đường trung bình.

Do đó ��ND // ��AG��ME // ��AG.

Suy ra ��ND // ��ME.

19 tháng 12 2023

A B C D M O E

a/ Goi E là trung điểm của MC

Từ gt \(AM=\dfrac{1}{2}MC\Rightarrow AM=ME=EC\)

Xét tg BCM có

ME=EC (cmt); DB=DC (gt) => DE là đường trung bình của tg BCM

=> DE//BM 

Xét tg ADE có

AM=ME (cmt)

BM//DE (cmt) =>OM//DE

=> OA=OD (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)

b/

Ta có DE là đường trung bình của tg BCM \(\Rightarrow DE=\dfrac{1}{2}BM\)

Xét tg ADE có

OA=OD (cmt); AM=ME (cmt) => OM là đường trung bình của tg ADE

\(\Rightarrow OM=\dfrac{1}{2}DE=\dfrac{1}{2}.\dfrac{1}{2}BM=\dfrac{1}{4}BM\)

23 tháng 1 2024

a) Qua D vẽ một đường thẳng song song với ��BM cắt ��AC tại N.

Xét Δ ���Δ MBC có ��=��DB=DC và ��DN // ��BM nên ��=��=12��MN=NC=21MC (định lí đường trung bình của tam giác).

Mặt khác ��=12��AM=21MC, do đó ��=��=12��AM=MN=21MC.

Xét Δ ���Δ AND có ��=��AM=MN và ��BM // ��DN nên ��=��OA=OD hay O là trung điểm của ��AD.

b) Xét Δ ���Δ AND có ��OM là đường trung bình nên ��=12��OM=21DN. (1)

Xét Δ ���Δ MBC có ��DN là đường trung bình nên ��=12��DN=21BM. (2)

Từ (1) và (2) suy ra ��=14��OM=41BM.

19 tháng 12 2023

Gọi K là trung điểm của CD

a: Xét ΔBDC có 

M là trung điểm của BC

K là trung điểm của CD

Do đó: MK là đường trung bình

=>MK//BD

hay ID//MK

Xét ΔAMK có 

I là trung điểm của AM

ID//MK

Do đó: D là trung điểm của AK

=>AD=DK=KC

=>AD=1/2DC

b: Xét ΔAMK có 

I là trung điểm của AM

D là trung điểm của AK

Do đó: ID là đường trung bình

=>ID=MK/2

hay MK=2ID

Ta có: MK là đường trung bình của ΔBDC

nên MK=BD/2

=>BD/2=2ID

hay BD=4ID

Đúng thầy cho em like nhé !

24 tháng 1 2024

a) Kẻ ��MN // ��BD�∈��NAC.

��MN là đường trung bình trong △���CBD

Suy ra N là trung điểm của ��CD (1).

��IN là đường trung bình trong △���AMN

Suy ra D là trung điểm của ��AN (2).

Từ (1) và (2) suy ra ��=12��AD=21DC.

b) Có ��=12��ID=21MN��=12��MN=21BD, nên ��=��BD=ID.

19 tháng 12 2023

Ta có

\(BC\perp AB';B'C'\perp AB'\) => BC//B'C'

\(\Rightarrow\dfrac{AB}{AB'}=\dfrac{BC}{B'C'}\Rightarrow\dfrac{x}{x+h}=\dfrac{a}{a'}\)

\(\Rightarrow a'x=ax+ah\Rightarrow x\left(a'-a\right)=ah\Rightarrow x=\dfrac{ah}{a'-a}\left(dpcm\right)\)

30 tháng 9 2024

Xét tam giác ABCABC có BC⊥ AB′BC AB và B′C′⊥AB′BCAB nên suy ra BCBC // B′C′BC.

Theo hệ quả định lí Thalès, ta có: ABAB′ =BCBC′ABAB =BCBC

Suy ra xx+h =aa′x+hx =aa

a′.x=a(x+h)a.x=a(x+h)

a′.x−ax=aha.xax=ah

x(a′−a)=ahx(aa)=ah

x=aha′ −ax=a aah.