Cho biết : P = ( a+2√a/√a+2 -1 ) : ( a-√a/√a-1 +1 )
a) Tìm ĐKXD , rút gọn P
b) Tìm a€ Z để P nhận giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có AM là tiếp tuyến (O)
=> tam giác OMA vuông ở M
mà MI vuông góc AO (tính chất 2 tiếp tuyến cắt nhau)
=> OM2=OI*OA(hệ thức lượng)
=>R2=OI*OA
Thay \(xy+yz+zx=5\) vào P, ta có:
\(P=\frac{3x+3y+2z}{\sqrt{6\left(x+y\right)\left(x+z\right)}+\sqrt{6\left(y+z\right)\left(y+x\right)}+\sqrt{\left(z+x\right)\left(z+y\right)}}\)
Áp dụng bất đẳng thức Cô-si, ta có:
\(\sqrt{6\left(x+y\right)\left(x+z\right)}\le\frac{3\left(x+y\right)+2\left(x+z\right)}{2}\)
\(\sqrt{6\left(y+z\right)\left(y+x\right)}\le\frac{3\left(y+x\right)+2\left(y+z\right)}{2}\)
\(\sqrt{\left(z+x\right)\left(z+y\right)}\le\frac{\left(z+x\right)+\left(z+y\right)}{2}\)
Cộng vế theo vế các bất đẳng thức cùng chiều, ta đươc:
\(\sqrt{6\left(x+y\right)\left(x+z\right)}+\sqrt{6\left(y+z\right)\left(y+x\right)}+\sqrt{\left(z+x\right)\left(z+y\right)}\le\frac{9}{2}x+\frac{9}{2}y+3z\)
\(\Rightarrow P\ge\frac{3x+3y+2z}{\frac{9}{2}x+\frac{9}{2}y+3z}=\frac{3x+3y+2z}{\frac{3}{2}\left(3x+3y+2z\right)}=\frac{2}{3}\)
Dấu "=" khi \(\hept{\begin{cases}3\left(x+y\right)=2\left(y+z\right)=2\left(z+x\right)\\z+y=z+x\\xy+yz+zx=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=1\\z=2\end{cases}}}\)
\(P=\frac{x}{2y+z}+\frac{y}{2z+x}+\frac{z}{2x+y}\)
Áp dụng bđt Cauchy-Schwarz ta có
\(P=\frac{x^2}{2xy+zx}+\frac{y^2}{2yz+xy}+\frac{z^2}{2z+yz}\ge\frac{\left(x+y+z\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
Dấu "=" xảy ra khi x=y=z=1
Gọi h/s cần tìm có dạng: y = ax + b (a khác 0)
PT hoành độ giao điểm của d1 và d2 là: 2x - 1 = x <=> x = 1
Thay x = 1 vào hs y = x ta dc y = 1
Vậy giao điểm của d1 và d2 có tọa độ là (1;1)
Vì hs cần tìm // vs d3 nên a = -3 và b khác 2
và hs cần tìm đi qua giao điểm của d1 và d2 nên thay x = 1; y = 1 vào hs y = ax + b ta dc: a + b = 1
hay -3 + b = 1 => b = 4
Vậy h/s cần tìm là: y = -3x + 4
PTHĐGĐ của (d1) và (d2):
x = 2x - 1
<=> x = 1
thay x = 1 vào (d2) ta được y = 1
=> điểm (1; 1) là giao điểm của (d1) và (d2)
gọi (d) : ax + b
do (d) // (d3) và đi qua giao điểm của (d1) và (d2)
=> (d) // (d3) nên a = a' hay a = -3
và b # b' hay b # 2
lại có a + b = 1 => b = 4 (thỏa)
vậy (d): -3x + 4
ĐKXĐ: x > 0 và x \(\ne1\)
P = 1 hay \(\frac{3\sqrt{x}}{x-\sqrt{x}}=1\)
<=> \(x-\sqrt{x}=3\sqrt{x}\) <=> \(x-4\sqrt{x}=0\) <=> \(\sqrt{x}\left(\sqrt{x}-4\right)=0\)
<=> \(\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}=4\end{cases}}\) <=> \(\orbr{\begin{cases}x=0\left(KTM\right)\\x=16\left(TM\right)\end{cases}}\)
Vậy x = 16 thì ...
\(P=\frac{3\sqrt{x}}{x-\sqrt{x}}\)
điều kiện xác định: \(x\ne1;0\)
PT <=> \(P=\frac{3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{3}{\sqrt{x}-1}\)
để P = 1 hay \(\frac{3}{\sqrt{x}-1}=1\)
<=>\(\frac{3}{\sqrt{x}-1}-1=0\)
<=> \(\frac{3-\sqrt{x}+1}{\sqrt{x}-1}=0\)
<=> \(\frac{4-\sqrt{x}}{\sqrt{x}-1}=0\)
<=> \(4-\sqrt{x}=0\)
<=> \(\sqrt{x}=4\)
<=> x = 16 (thỏa mãn điều kiện)
vậy ...