Cho tam giác ABC vuông tại A, đường cao AH, kẻ HD vuông góc với AB, HE vuông góc với AC ( D thuộc Ab, E thuộc AC)
a) Cm góc C = góc ADE
b) gọi M là trung điểm của BC. Cm AM vuông góc với DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F
Xét \(\Delta ABC\)có: D là trung điểm của AB, E là trung điểm của AC
\(\Rightarrow\)DE là đường trung bình của \(\Delta ABC\)
\(\Rightarrow DE=\frac{1}{2}.BC=\frac{1}{2}.14=7\left(cm\right)\)
Tương tự ta có:
DF là đường trung bình của \(\Delta ABC\)\(\Rightarrow DF=\frac{1}{2}.AC=\frac{1}{2}.10=5\left(cm\right)\)
EF là đường trung bình của \(\Delta ABC\)\(\Rightarrow EF=\frac{1}{2}.AB=\frac{1}{2}.6=3\left(cm\right)\)
Vậy \(DE=7cm\), \(DF=5cm\), \(EF=3cm\)
A B C M N
Ta có tam giác ABC có M là trung điểm AB (*)
N là trung điểm của AC (**)
Suy ra MN là đường trung bình tam giác ABC
Do đó : MN // BC => MN = BC/2 = 4/2 = 2 cm
Vậy MN = 2cm
A B C M N
Vì M là trung điểm của AB, N là trung điểm của AC
\(\Rightarrow\)MN là đường trung bình của \(\Delta ABC\)
\(\Rightarrow MN=\frac{1}{2}.BC=\frac{1}{2}.4=2\left(cm\right)\)
Vậy \(MN=2cm\)
Ta có: \(\left(-a-b\right)^2\)
\(=\left[-\left(a+b\right)\right]^2\)
\(=\left(a+b\right)^2\)
\(\left(-a-b\right)^2=\left(a+b\right)^2\)
\(VT=\left[-\left(a+b\right)^2\right]\)
\(=\left(a+b\right)^2=VP\)
a, b, c đôi một khác nhau => a ≠ b ≠ c
a3 + b3 + c3 = 3abc
<=> a3 + b3 + c3 - 3abc = 0
<=> ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0
<=> [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0
<=> ( a + b + c )( a2 + b2 + c2 + 2ab - ac - bc ) - 3ab( a + b + c ) = 0
<=> ( a + b + c )( a2 + b2 + c2 - ab - ac - bc ) = 0
<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)
I) \(a+b+c=0\Rightarrow\hept{\begin{cases}-a=b+c\\-b=a+c\\-c=a+b\end{cases}}\)
Xét các mẫu thức ta có :
1) a2 + b2 - c2 = a2 + ( b - c )( b + c ) = a2 - a( b + c ) = a2 - ab + ac = a( a - b + c ) = a( a + b + c - 2b ) = -2ab
TT : b2 + c2 - a2 = -2bc
c2 + a2 - b2 = -2ac
Thế vô A ta được :
\(A=\frac{-1}{2ab}+\frac{-1}{2bc}+\frac{-1}{2ac}=\frac{-c}{2abc}+\frac{-a}{2abc}+\frac{-b}{2abc}=\frac{-\left(a+b+c\right)}{2abc}=0\)
II) a2 + b2 + c2 - ab - ac - ab = 0
<=> 2(a2 + b2 + c2 - ab - ac - ab) = 2.0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2ab = 0
<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0
<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)( trái với đề bài )
=> A = 0
d) 992 + 1 + 198 = 992 + 2.99.1 + 12 = ( 99 + 1 )2 = 1002 = 10 000
e) 26.34 = ( 30 - 4 )( 30 + 4 ) = 302 - 42 = 900 - 16 = 884
g) 95.105 = ( 100 - 5 )( 100 + 5 ) = 1002 - 52 = 10 000 - 25 = 9975
h) 29.31 = ( 30 - 1 )( 30 + 1 ) = 302 - 12 = 900 - 1 = 899
Ta có: \(2a^2+\frac{b^2}{4}+\frac{1}{a^2}=4\Rightarrow8a^4+a^2b^2+4=16a^2\Rightarrow a^2b^2=-8a^4+16a^2-4=-8\left(a^4-2a^2+1\right)+4=-8\left(a^2-1\right)^2+4\le4\)\(\Rightarrow\left|ab\right|\le2\Rightarrow-2\le ab\le2\)
Vậy MaxS = 2023 khi ab = 2 và a2 = 1 do đó \(\left(a,b\right)\in\left\{\left(-1;-2\right);\left(1;2\right)\right\}\)
MinS = 2019 khi ab = -2 và a2 = 1 do đó \(\left(a,b\right)\in\left\{\left(-1;2\right);\left(1;-2\right)\right\}\)
A B C H D E
a, Ta có :
^C = 450 ( t/c tam giác vuông cân : mỗi góc nhọn đều bằng 450 ) (*)
Lại có : Đường trung trực của một đoạn thẳng là đường thẳng vuông góc với đoạn thẳng ấy tại trung điểm của nó
Mà : ^BDH = 900 => ^HDA + ^BDH = ^DBA => ^HDA = ^DBA - ^BDH = 1800 - 900 = 900
Suy ra : ^ADE = ^HDE = ^HDA/2 = 900/2 = 450 (**)
tỪ (*); (**) TA CÓ ĐPCM