Bài 3: Thực hiện phép tính
A= (12x mũ 3 y mũ 4 - 15x mũ 2 y mũ 3 - 9x mũ 3 y mũ 2) : 3x mũ 2 y
B= (20x mũ 5 y mũ 4 - 16x mũ 3 y + 8x mũ 4 y mũ 3) : (-4x mũ 3 y mũ 2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2 :
a, \(x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow x=0;4\)
b, \(5x\left(x-2020\right)-x+2020=0\)
\(\Leftrightarrow5x\left(x-2020\right)-\left(x-2020\right)=0\Leftrightarrow\left(5x-1\right)\left(x-2020\right)=0\)
\(\Leftrightarrow x=\frac{1}{5};2020\)
c, \(\left(4x+5\right)^2-\left(2x-1\right)^2=0\)
\(\Leftrightarrow16x^2+40x+25-\left(4x^2-4x+1\right)=0\)
\(\Leftrightarrow12x^2+44x+24=0\Leftrightarrow4\left(x+3\right)\left(3x+2\right)=0\)
\(\Leftrightarrow x=-3;-\frac{2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3 :
a, \(x^3-4x=x\left(x^2-4\right)=x\left(x-2\right)\left(x+2\right)\)
b, \(x^2+2x-y^2+1=\left(x+1\right)^2-y^2=\left(x+1-y\right)\left(x+1+y\right)\)
c, \(x^2+y^2-z^2+2xy=\left(x+y\right)^2-z^2=\left(x+y-z\right)\left(x+y+z\right)\)
d, \(x^2-7x+12=x^2-3x-4x+12=\left(x-4\right)\left(x-3\right)\)
e, \(x^2-4x+xy-4y=x\left(x-4\right)+y\left(x-4\right)=\left(x+y\right)\left(x-4\right)\)
g, \(5x^2-10xy+5y^2-20z^2=5\left(x^2-2xy+y^2-4z^2\right)=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)
f, \(4x^2-4xy+y^2-9z^2=\left(2x+y\right)^2-\left(3z\right)^2=\left(2x+y-3z\right)\left(2x+y+3z\right)\)
n, \(\left(x+y\right)^3-\left(z-t\right)^3=\left(x+y-z+t\right)\left[\left(x+y\right)^2+\left(x+y\right)\left(z-t\right)+\left(z-t\right)^2\right]\)
Làm nốt nhé, ko phải đi học thì t giải hết cho cậu r :))
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)
\(=4\left[x\left(x+y+z\right)\right]\left[\left(x+y\right)\left(x+z\right)\right]+y^2z^2\)
\(=4\left(x^2+xy+zx\right)\left(x^2+xy+yz+zx\right)+y^2z^2\) \(\left(1\right)\)
Đặt \(\hept{\begin{cases}x^2+xy+zx=a\\yz=b\end{cases}}\)
Khi đó: \(\left(1\right)=4a\left(a+b\right)+b^2\)
\(=4a^2+4ab+b^2\)
\(=\left(2a+b\right)^2\)
\(=\left(2x^2+2xy+2zx+yz\right)^2\ge0\left(\forall x,y,z\right)\)
=> đpcm
Ta có:\(4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2=4\left(x^2+xy+xz\right)\left(x^2+xy+yz+zx\right)+y^2z^2\)Đặt \(x^2+xy+xz=t\)thì biểu thức trên trở thành \(4t\left(t+yz\right)+y^2z^2=4t^2+4yzt+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+yz\right)^2\ge0\forall x,y,z\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2-4x+6\)
\(=x^2-4x+4+2\)
\(=\left(x-2\right)^2+2\)
\(\ge\left(3-2\right)^2+2\)
\(\ge1+2\)
\(\ge3\)
Dấu "=" xảy ra <=> x=3
Vậy min của biểu thức bằng 3 khi x=3
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
x3 - 3x2 + 5x - 6
= x3 - 2x2 - x2 + 2x + 3x - 6
= x2( x - 2 ) - x( x - 2 ) + 3( x - 2 )
= ( x - 2 )( x2 - x + 3 )
=> ( x3 - 3x2 + 5x - 6 ) : ( x - 2 ) = x2 - x + 3
![](https://rs.olm.vn/images/avt/0.png?1311)
4x(x+y)(x+y+z)(x+z) + y^2.z^2
= 4(x^2 + xy + xz)( x^2 + xy + xz + yz) + y^2.z^2
Đặt x^2 + yz + xz = t
=> 4x(x+y)(x+y+z)(x+z) + y^2.z^2 = 4t( t + yz) + y^2.z^2 = 4t^2 + 4tyz +y^2.z^2 = ( 2t + yz)^2 \(\ge\)0(ĐPCM)
Vậy 4t^2 + 4tyz +y^2.z^2 = ( 2t + yz)^2 \(\ge\)0 với moji x,y,z
![](https://rs.olm.vn/images/avt/0.png?1311)
A=(12x3y4-15x2y3-9x3y2):3x2y
=(12x3y4:3x2y)-(15x2y3:3x2y)- (9x3y2:3x2y)
=4x2y3-5y2-3x2
B, sai đề bạn ơi