K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chứng minh theo thứ tự sau đây

chứng minh tứ giác ABMH nội tiếp đường tròn

chứng minh DC⋅AB=CA⋅CM

Nếu MC = HD và MD = 5cm thì độ dài đoạn MC bằng bao nhiêu?

chứng minh AD vuông góc với BM

15 tháng 3 2020

hãy dùng cái đầu bạn nhé :))))

\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)

Xét từng TH với x-y=1 và x-y=-1

\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)

Xét từng TH x=1 và y=-2

16 tháng 3 2020

1:
a)\(\hept{\begin{cases}nx+x=5 \\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
 

17 tháng 3 2020

ta có biến đổi góc như sau

\(\widehat{BIK}=\frac{1}{2}\widehat{A}+\frac{1}{2}\widehat{B}=\widehat{KAC}+\widehat{IBC}=\widehat{KBC}+\widehat{IBC}=\widehat{IBK}\)

=> tam giác BKI cân tại K nên KB =KI = KC

Hay K là tâm đường tròn ngoại tiếp tam giác IBC 

a) Do E , F là các tiếp điểm của (I) zới AC , AB nên \(\widehat{EFD\:=}\widehat{CED},\widehat{FED}=\widehat{BFD},EF//PQ\)

=>\(\widehat{EFD}=\widehat{AQF},\widehat{FED}=\widehat{APE}.\) mặt khác \(\widehat{PEA}=\widehat{CED},\widehat{AQF}=\widehat{BFD}\)suy ra tam giác FQA\(_{\simeq}\)tam giác PEA (g.g)

=>\(\frac{QA}{EA}=\frac{AF}{AP}=>AP.AQ=AE.FA=AE^2\)

hay \(\frac{BK\left(AB+AC\right)}{BC}\ge2BK\Leftrightarrow\frac{AB+AC}{BC}\ge2\)khi tam giác ABC đều thì \(\frac{AB+AC}{BC}=2\). Zậy GTNN của\(\frac{AB+AC}{BC}=2\)

b)ÁP dụng dịnh lý Ptolemy cho tứ giác ABKC

ta có \(AK.BC=AB.Ck=Bk\left(AB+AC\right)\)

tam giác AOD cân \(\widehat{AOI}\le90^0\Leftrightarrow IA\ge IK\Leftrightarrow IA+IK\ge2IK\Leftrightarrow AK\ge2IK\)suy ra\(\frac{BK\left(AB+AC\right)}{BC}\ge2IK\)

thầy cô tích cho em di ạ . em cố gắng để giải bài này r

17 tháng 3 2020

CM được S,T,E thẳng hàng 

Xét tam giác ECT zà tam giác EST có \(\widehat{CET}\left(chung\right),\widehat{ECT}=\widehat{ESC}\)

=>tam giác ECT=tam giác EST(g.g) 

=>\(\frac{EC}{ES}=\frac{ET}{EC}=>ET.ES=EC^2\)

xét tam giác EMT zà tam giác ESN có \(\widehat{MET}\left(chung\right),\widehat{EMT}=\widehat{ESN}\)

=> tam giác ECT = tam giác ESN(g.g) 

=>\(\frac{EM}{ES}=\frac{ET}{EN}=>ET.ES=EM.EN=EM.EN\\\)

Nên \(EC^2=EM.EN=\left(=ET.ES\right)=\frac{EC}{EN}=\frac{EM}{EC}\)

tam giác ECM = tam giasc ENC (c.g.c)

=>\(\widehat{EMC}=\widehat{ENC}\)

=>\(\widehat{ECD}+\widehat{DCM}=\widehat{NAC}+\widehat{NCA}\)

mà \(\widehat{ECD=\widehat{NAC}}\)

nên \(\widehat{DCM}=\widehat{NCA}\)

ta có \(KL//AB=>\widebat{BK}=\widebat{AL}=>\widehat{DCM}=\widehat{LCA}\)

ta có\(\widehat{NCA}=\widehat{LCA}\left(=\widehat{DCM}\right)\)

=> hai tia CN , CL trùng nhau .zậy C,N,L thẳng hàng

15 tháng 3 2020

\(x=\frac{\left(1+\sqrt{5}\right)^2}{4}\)

16 tháng 3 2020

từ từ hồi trả lời cho câu này củng hơi khó cần thời gian suy nghĩ

15 tháng 3 2020

cần cái gì

16 tháng 3 2020

đợi tý

17 tháng 3 2020

a) tứ giác APBQ có góc OAP=90độ, OBP=90 độ ( zì PA , PB tiếp tuyến )

góc APB =55 độ

góc AOB =360 độ -90-90-55=125 

=> cung nhỏ AB là 125 độ

cung lớn AB là

360-125=235 độ