Câu1: tìm 2 số tự nhiên liên tiếp có tổng các bình phương là 85
Câu 2 :tìm 1 số tự nhiên có 2 chữ số biết tổng các chữ số là 7. Nếu đổi chổ 2 chữ số hàng đơn vị và hàng chục cho nhau sos đó giảm đi 45 đơn vin
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{a^2+\left(2^{a-3}+2^{-a-1}\right)^2}+\sqrt{a^4+a^2+2}=\sqrt{\left(a^2+a+1\right)^2+\left(1+2^{a-3}+2^{-a-1}\right)^2}\)
đề thế cơ mà , làm t nghĩ mà đell nghĩ đc j .
làm này .
Không mất tính tổng quát
đặt \(x=a>0,y=2^{a-3}+2^{-a-1}>0,z=a^2+1>0,t=1>0\)
khi đó phương trình trở thành
\(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}=\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\left(1\right)\)
Mặt khác ta cũng có :\(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\)(2) zới mọi \(x,y,z,t>0\)
\(\Leftrightarrow x^2+y^2+z^2+t^2+2\sqrt{x^2z^2+x^2t^2+y^2z^2+y^2t^2}\ge x^2+y^2+z^2+t^2+2\left(xz+yt\right)\)( biến đổi từ cái trên nhá )
\(\Leftrightarrow x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2+y^2+z^2+t^2+2\left(xz+yt\right)\)
\(\Leftrightarrow x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2z^2+y^2t^2+2xyzt\Leftrightarrow\left(yz-xt\right)^2\ge0\)(luôn đúng zới mọi x,y,z,t > 0)
zậy từ (1) zà (2) xảy ra khi zà chỉ khi yz=xt
=>\(\left(2^{a-3}+2^{-a-1}\right)\left(a^2+1\right)=a\Leftrightarrow\left(2^{a-3}+2^{-a-1}\right)=\frac{a}{a^2+1}\left(3\right)\)(zì \(a^2+1>0\)
mà lại có \(\frac{a}{a^2+1}\le\frac{1}{2}\)(zì \(\left(a-1\right)^2\ge0\), dấu "=" xảy ra khi a=1 (4)
zà \(\left(2^{a-3}+2^{-a-1}\right)=\frac{2^a}{8}+\frac{1}{2.2^a}\ge\frac{1}{2}\)(theo cô-si nha) ,dấu "=" xảy ra khi a=1 (5)
zậy từ (3) , (4) , (5) \(=>a=1\)là giá trị nguyên dương duy nhất cần tìm
\(\hept{\begin{cases}5\left|x-1\right|-3\left|y+2\right|=7\\2\sqrt{4x^2-8x+4}+5\sqrt{y^2+4y+4}=13\end{cases}}\)
<=> \(\hept{\begin{cases}5\left|x-1\right|-3\left|y+2\right|=7\\2\sqrt{\left(2x-2\right)^2}+5\sqrt{\left(y+2\right)^2}=13\end{cases}}\)
<=> \(\hept{\begin{cases}5\left|x-1\right|-3\left|y+2\right|=7\\2\left|2x-2\right|+5\left|y+2\right|=13\end{cases}}\)
<=> \(\hept{\begin{cases}5\left|x-1\right|-3\left|y+2\right|=7\\4\left|x-1\right|+5\left|y+2\right|=13\end{cases}}\)
<=> \(\hept{\begin{cases}\left|x-1\right|=2\\\left|y+2\right|=1\end{cases}}\)
Em tự làm tiếp ( hệ có 4 nghiệm nhé!)
\(\hept{\begin{cases}n\left(1-x\right)-y=4\\x=1-y\end{cases}}\)=> \(\hept{\begin{cases}n-ny-y=4\\x=1-y\end{cases}}\)
=> \(\hept{\begin{cases}ny+y=n-4\\x=1-y\end{cases}}\)
=> \(\hept{\begin{cases}y\left(n+1\right)=n-4\left(1\right)\\x=1-y\end{cases}}\)
*Để hệ pt có nghiệm duy nhất thì pt (1) có nghiệm duy nhất => \(a\ne0\)
=> \(n+1\ne0\)
=>\(n\ne-1\)
=> Vậy \(n\ne-1\)thì hệ pt có nghiệm duy nhất
*Để hệ pt vô nghiệm thì pt (1) vô nghiệm => \(\hept{\begin{cases}a=0\\b\ne0\end{cases}}\)
=> \(\hept{\begin{cases}n+1=0\\n-4\ne0\end{cases}}\)
=> \(\hept{\begin{cases}n=-1\left(TM\right)\\n\ne4\end{cases}}\)Vậy n = -1 thì hệ pt vô nghiệm
Gọi số thùng là x ( > 0 ; thùng ); số túi quà y ( >0 ; quà )
Xếp mỗi thùng 8 tú dư ra hai túi khi đó: y = 8 x + 2 <=> -8x + y = 2
Xếp mỗi thùng 9 túi thì dư ra hai thùng : y = 9( x- 2) <=> -9x + y = -18
Từ hai phương trình trên ta có hệ:
\(\hept{\begin{cases}-8x+y=2\\-9x+y=-18\end{cases}}\Leftrightarrow\hept{\begin{cases}x=20\\y=162\end{cases}}\)thỏa mãn
Vậy:...
Bài 2 :
A B C D H
a ) Ta có : \(AH\perp BD\Rightarrow\widehat{AHD}=\widehat{BCD}=90^0\)
AD//BC \(\Rightarrow\widehat{ADH}=\widehat{DBC}\)
\(\Rightarrow\Delta AHB~\Delta DCB\left(g.g\right)\)
b ) Ta có : \(AB=12,BC=9\Rightarrow BD=\sqrt{AB^2+BC^2}=15\)
Từ câu a \(\Rightarrow\frac{AH}{CD}=\frac{AB}{DB}\)
\(\Rightarrow AH=\frac{AB.CD}{DB}=\frac{12.12}{15}=\frac{48}{5}\)
c ) Ta có \(\widehat{DAH}=\widehat{ABH}\left(+\widehat{BAH}=90^0\right)\)
\(\widehat{AHB}=\widehat{AHD}=90^0\)
\(\Rightarrow\Delta ADH~\Delta BAH\left(g.g\right)\)
\(\Rightarrow\frac{AH}{BH}=\frac{DH}{AH}\Rightarrow AH.AH=BH.DH\)