2x(3-x)+5x-15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ( 2x - 1 )( 2x + 1 ) - 4( x2 + x ) = 16
⇔ 4x2 - 1 - 4x2 - 4x = 16
⇔ -4x - 1 = 16
⇔ -4x = 17
⇔ x = -17/4
b) 5x( x - 2013 ) - x + 2013 = 0
⇔ 5x( x - 2013 ) - ( x - 2013 ) = 0
⇔ ( x - 2013 )( 5x - 1 ) = 0
⇔ \(\orbr{\begin{cases}x-2013=0\\5x-1=0\end{cases}}\)
⇔ \(\orbr{\begin{cases}x=2013\\x=\frac{1}{5}\end{cases}}\)
a) \(\left(2x-1\right)\left(2x+1\right)-4.\left(x^2+x\right)=16\)
\(4x^2-1-4x^2-4x=16\)
\(-1-4x=16\)
\(-4x=17\)
\(x=-\frac{17}{4}\)
b) \(5x\left(x-2013\right)-x+2013=0\)
\(\left(x-2013\right)\left(5x-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-2013=0\\5x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=2013\\x=\frac{1}{5}\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C O D E K
Gọi K là giao điểm của AD và BC => K là trung điểm AD (vì D đối xứng với A qua BC)
lại có O là trung điểm AE (vì E đối xứng với A qua O)
=> KO là đường trung bình của tam giác ADE => KO // DE hay BC // DE => BCED là hình thang (1)
ta có O là trung điểm AE (cmt) và O cũng là trung điểm BC (giả thiết)
=> ABEC là hình bình hành => AB // CE => \(\widehat{ABC}=\widehat{BCE}\)(so le trong)
lại có \(\widehat{ABC}=\widehat{DBC}\)(do D đói xứng với A qua BC)
=> \(\widehat{DBC}=\widehat{BCE}\)(2)
từ (1) và (2) => BCED là hình thang cân.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2-4y.\left(x-y\right)\)
\(x^2-4xy+\left(2y\right)^2\)
\(\left(x-2y\right)^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
f(x) = x4 - 9x3 + 21x2 + ax + b
g(x) = x2 - x - 2
Ta có f(x) bậc 4 ; g(x) bậc 2
=> Thương là một đa thức bậc 2
Gọi đa thức thương đó là h(x) = x2 + cx + d
Ta có f(x) chia hết cho g(x)
<=> x4 - 9x3 + 21x2 + ax + b = ( x2 - x - 2 )( x2 + cx + d )
<=> x4 - 9x3 + 21x2 + ax + b = x4 + cx3 + dx2 - x3 - cx2 - dx - 2x2 - 2cx - 2d
<=> x4 - 9x3 + 21x2 + ax + b = x4 + ( c - 1 )x3 + ( d - c - 2 )x2 + ( -d - 2c )x - 2d
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}c-1=-9\\d-c-2=21\\-d-2c=a\end{cases}};-2d=b\)
\(\Rightarrow\hept{\begin{cases}c=-8\\d=15\\a=1\end{cases}};b=-30\)
\(\Rightarrow\hept{\begin{cases}a=1\\b=-30\end{cases}}\)
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
a) rồi
b)\(2^2.\left(x-2y\right)\left(x-2y\right)\)
\(\left[2.\left(x-2y\right)\right]^2\)
c) rồi
d) rồi
![](https://rs.olm.vn/images/avt/0.png?1311)
a) a3 - a2c + a2b - abc
= a( a2 - ac + ab - bc )
= a[ ( a2 + ab ) - ( ac + bc ) ]
= a( a( a + b ) - c( a + b ) ]
= a( a + b )( a - c )
b) ( x2 + 1 )2 - 4x2
= ( x2 + 1 )2 - ( 2x )2
= ( x2 - 2x + 1 )( x2 + 2x + 1 )
= ( x - 1 )2( x + 1 )2
c) x2 - 10x - 9y2 + 25
= ( x2 - 10x + 25 ) - 9y2
= ( x - 5 )2 - ( 3y )2
= ( x - 3y - 5 )( x + 3y - 5 )
d) 4x2 - 36x + 56
= 4x2 - 8x - 28x + 56
= 4x( x - 2 ) - 28( x - 2 )
= 4( x - 2 )( x - 7 )
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D P Q N M
Đường trung bình của hình thang là NM
P, Q là giao của MN với BD và AC
\(\frac{AB}{CD}=\frac{2}{3}\)
\(EF=\frac{AB+CD}{2}\Rightarrow AB+CD=2.EF=2.5=10cm.\)
\(\Rightarrow AB=10:\left(2+3\right).2=4cm\Rightarrow CD=10-4=6cm\)
Xét tg ABD có
AN=DN
NP//AB
=> P là trung điểm của BD (trong 1 tg đường thẳng // với đáy và đi qua trung điểm 1 cạnh bên thì đi qua trung điểm cạnh bên còn lại)
=> NP là đường trung bình của tg ABD \(\Rightarrow NP=\frac{AB}{2}=\frac{4}{2}=2cm\)
Chứng minh tương tự khi xét tg ABC ta cũng c/m được Q là trung điểm của AC
Xét tg ADC có
AN=DN và AQ=CQ => NQ là đường trung bình của tg ADC \(\Rightarrow NQ=\frac{CD}{2}=\frac{6}{2}=3cm\)
Ta có PQ=NQ-NP=3-2=1 cm
2x( 3 - x ) + 5x - 15
= 2x( 3 - x ) - ( 15 - 5x )
= 2x( 3 - x ) - 5( 3 - x )
= ( 3 - x )( 2x - 5 )
Đề:.......
<=> 6x - 2x2 + 5x - 15
<=> 2x(3 - x) + 5(x - 3)
<=> 2x(3 - x) - 5(3 - x)
<=> (3 - x)(2x - 5)