Cho hình thoi ABCD có góc A = 60 độ . Kẻ 2 đường cao BE và BF . tam giác BEF là tam giác gì?vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 - 16 - 4xy + 4y2
= ( x2 - 4xy + 4y2 ) - 16
= ( x - 2y )2 - 42
= ( x - 2y - 4 )( x - 2y + 4 )
b) x5 - x4 + x3 - x2
= x2( x3 - x2 + x - 1 )
= x2[ x2( x - 1 ) + ( x - 1 ) ]
= x2( x - 1 )( x2 + 1 )
c) x( x + 4 )( x + 6 )( x + 10 ) + 128 < mình nghĩ là nên sửa đề như này :]>
= [ x( x + 10 ) ][ ( x + 4 )( x + 6 ) ] + 128
= ( x2 + 10x )( x2 + 10x + 24 ) + 128
Đặt t = x2 + 10x
bthuc <=> t( t + 24 ) + 128
= t2 + 24t + 128
= t2 + 16t + 8t + 128
= t( t + 16 ) + 8( t + 16 )
= ( t + 16 )( t + 8 )
= ( x2 + 10x + 16 )( x2 + 10x + 8 )
= ( x2 + 2x + 8x + 16 )( x2 + 10x + 8 )
= [ x( x + 2 ) + 8( x + 2 ) ]( x2 + 10x + 8 )
= ( x + 2 )( x + 8 )( x2 + 10x + 8 )
cảm ơn bạn câu c mình chép nhầm nó là 128 đó
Bài làm
a) 2(x + y)3 + 2(x - y)3
= 2[(x + y)3 + (x - y)3]
= 2[x3 + 3x2y + 3xy2 + y3 + x3 - 3x2y + 3xy2 - y3]
= 2[(x3 + x3) + (3x2y - 3x2y) + (3xy2 + 3xy2) + (y3 - y3)]
= 2[2x3 + 6xy2]
= 4x3 + 12xy2
b)uhm... Mình sửa đề chút, thay vì là -3(x + y)2(x - y) thì mình sẽ thành +3(x + y)2(x - y)
(x - y)3 - (x + y)3 + 3(x + y)2(x - y) - 3(x + y)(x - y)2
= -[(x + y)3 - 3(x + y)2(x - y) + 3(x + y)(x - y)2 - (x - y)3]
= -[(x + y) - (x - y)]3
= -[x + y - x + y ]3
= -[y]3
= -y
a, 36.28+36.82 +64.69+64.41
=36(28+82)+64(69+41)
=36.110+64.110
=110(36+64)
=110.100
=11000
A = -x2 - 4x - y2 + 2y
= -( x2 + 4x + 4 ) - ( y2 - 2y + 1 ) + 5
= -( x + 2 )2 - ( y - 1 )2 + 5 ≤ 5 ∀ x, y
Dấu "=" xảy ra khi x = -2 ; y = 1
=> MaxA = 5 <=> x = -2 ; y = 1
B = \(\frac{2020}{x^2+2x+6}\)
Để B đạt GTLN => x2 + 2x + 6 đạt GTNN
Ta có : x2 + 2x + 6 = ( x2 + 2x + 1 ) + 5 = ( x + 1 )2 + 5 ≥ 5 ∀ x
Dấu "=" xảy ra khi x = -1
=> Min( x2 + 2x + 6 ) = 5
=> MaxB = 2020/5 = 404 khi x = -1
C = \(\frac{15}{6x-x^2-14}\)
Để C đạt GTNN => 6x - x2 - 14 đạt GTLN
Ta có : 6x - x2 - 14 = -( x2 - 6x + 9 ) - 5 = -( x - 3 )2 - 5 ≤ -5 ∀ x
Dấu "=" xảy ra khi x = 3
=> Max( 6x - x2 - 14 ) = -5
=> MinC = 15/(-5) = -3 khi x = 3
Bài làm
A B C D E F 60 o
Xét tam giác AEB và tam giác DFB có:
\(\widehat{BEA}=\widehat{BFD}=90^0\)
Cạnh huyền AB = BD ( Do ABCD là hình thoi nên AB = AC = CD = BD )
Góc nhọn: \(\widehat{A}=\widehat{D}\)( hai góc đối của hình thoi )
=> Tam giác AEB = tam giác DFB ( cạnh huyền - góc nhọn )
=> BE = BF ( hai cạnh tương ứng )
=> Tam giác BEF cân tại B.
Xét tam giác ABE vuông tại E có:
\(\widehat{A}+\widehat{ABE}=90^0\)( hai góc phụ nhau )
hay \(60^0+\widehat{ABE}=90^0\)
=> \(\widehat{ABE}=90^0-60^0=30^0\)
Mà \(\widehat{ABE}=\widehat{DBF}=30^0\)( Vì tam giác AEB = tam giác DFB )
Ta có: \(\widehat{ABD}+\widehat{BDC}=180^0\)( Do BA // DC và hai góc này là hai góc trong cùng phía bù nhau )
=> \(\widehat{ABE}+\widehat{EBF}+\widehat{FBD}+\widehat{BDC}=180^0\)
hay \(30^0+\widehat{EBF}+30^0+60^0=180^0\)
=> \(\widehat{EBF}=180^0-60^0-30^0-30^0\)
=> \(\widehat{EBF}=60^0\)
Mà tam giác EBF cân tại B ( chứng minh trên )
=> Tam giác EBF là tam giác đều.