K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2024

cứ mỗi đỉnh của đa giác thì sẽ tạo ra được 1 tam giác có 2 cạnh là 2 cạnh của đa giác. Mà đa giác có 10 đỉnh nên ta sẽ 10 tam giác thoả yêu câu

25 tháng 1 2024

Gọi chữ số cần lập có dạng �����‾abcde

- Nếu các chữ số không yêu cầu đôi một khác nhau:

e có 4 cách chọn, a có 6 cách chọn; 3 vị trí còn lại đều có 7 cách chọn

 có 4.6.7.7.7=82324.6.7.7.7=8232 số

- Nếu các chữ số đôi một khác nhau:

+ Nếu �=0e=0a có 6 cách chọn, b có 5 cách chọn, c có 4 cách chọn, d có 3 cách chọn  có 6.5.4.3=3606.5.4.3=360 số

+ Nếu �≠0⇒�e=0e có 3 cách chọn, a có 5 cách chọn, b có 5 cách chọn, c có 4 cách chọn, d có 3 cách chọn ⇒900900 số

 có 900+360=1260900+360=1260 số

AH
Akai Haruma
Giáo viên
26 tháng 1 2024

Lời giải:

Gọi số tự nhiên có 5 chữ số khác nhau là $\overline{abcde}$

Số cách lập số tự nhiên có 5 chữ số khác nhau từ 2,3,4,5,6 là: $5!=120$ số

Số cách lập số tự nhiên có 5 chữ số khác nhau từ 2,3,4,5,6 mà chia hết cho 5 là:

$4!.1=24$ số (do e chỉ có 1 cách chọn là số 5, 4 số còn lại hoán vị là 4!)

Số cách lập số tự nhiên có 5 chữ số khác nhau mà không chia hết cho 5:

$120-24=96$ (số)

25 tháng 1 2024

Gọi chữ số cần lập có dạng �����‾abcde

- Nếu các chữ số không yêu cầu đôi một khác nhau:

e có 4 cách chọn, a có 6 cách chọn; 3 vị trí còn lại đều có 7 cách chọn

 có 4.6.7.7.7=82324.6.7.7.7=8232 số

- Nếu các chữ số đôi một khác nhau:

+ Nếu �=0e=0a có 6 cách chọn, b có 5 cách chọn, c có 4 cách chọn, d có 3 cách chọn  có 6.5.4.3=3606.5.4.3=360 số

+ Nếu �≠0⇒�e=0e có 3 cách chọn, a có 5 cách chọn, b có 5 cách chọn, c có 4 cách chọn, d có 3 cách chọn ⇒900900 số

 có 900+360=1260900+360=1260 số

25 tháng 1 2024

Phía trên mình trả lời nhầm nhé.

 

NV
21 tháng 1 2024

8.

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+2x+3}=a>0\\\sqrt{x^2+4x+5}=b>0\end{matrix}\right.\) \(\Rightarrow2a^2-b^2=x^2+1\)

Pt trở thành:

\(\sqrt{2a^2-b^2}+2a=3b\)

\(\Leftrightarrow\sqrt{2a^2-b^2}=3b-2a\)

\(\Rightarrow2a^2-b^2=4a^2-12ab+9b^2\)

\(\Leftrightarrow2a^2-12ab+10b^2=0\Rightarrow\left[{}\begin{matrix}a=b\\a=5b\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+2x+3}=\sqrt{x^2+4x+5}\\\sqrt{x^2+2x+3}=5\sqrt{x^2+4x+5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+3=x^2+4x+5\\x^2+2x+3=25\left(x^2+4x+5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\24x^2+98x+122=0\left(vn\right)\end{matrix}\right.\)

NV
21 tháng 1 2024

9.

ĐKXĐ: \(-1\le x\le1\)

Đặt \(\left\{{}\begin{matrix}\sqrt{1+x}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2+2b^2=3-x=-\left(x-3\right)\)

Pt trở thành:

\(a-2b-3ab=-\left(a^2+2b^2\right)\)

\(\Leftrightarrow a-2b+a^2-3ab+2b^2=0\)

\(\Leftrightarrow a-2b+\left(a-b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow\left(a-2b\right)\left(a-b+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\a+1=b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{1+x}=2\sqrt{1-x}\\\sqrt{1+x}+1=\sqrt{1-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}1+x=4\left(1-x\right)\\x+2+2\sqrt{1+x}=1-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=3\Rightarrow x=\dfrac{3}{5}\\-1-2x=2\sqrt{1+x}\left(1\right)\end{matrix}\right.\)

Xét (1) \(\Leftrightarrow\left\{{}\begin{matrix}-1-2x\ge0\\\left(-1-2x\right)^2=4\left(1+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le-\dfrac{1}{2}\\x^2=\dfrac{3}{4}\end{matrix}\right.\) \(\Rightarrow x=-\dfrac{\sqrt{3}}{2}\)

Vậy \(x=\left\{\dfrac{3}{5};-\dfrac{\sqrt{3}}{2}\right\}\)

18 tháng 1 2024

a) Từ đồ thị, ta thấy \(A\left(0;4\right),B\left(3;0\right),C\left(0;-4\right),D\left(-3;0\right)\)

b) Ta thấy O đồng thời là trung điểm của AC và II' nên AICI' là hình bình hành \(\Rightarrow\) AI' // CI hay AI' // BC (do B, I, C thẳng hàng)

 Tương tự, ta chứng minh được DI' // BC. Do đó A, I', D thẳng hàng theo tiên đề Euclide.

AH
Akai Haruma
Giáo viên
18 tháng 1 2024

Lời giải:

Để 2 vecto cùng phương thì:

$\frac{m^2+m+2}{m}=\frac{4}{2}=2$ ($m\neq 0$)

$\Leftrightarrow m^2+m+2=2m$

$\Leftrightarrow m^2-m+2=0$

$\Leftrightarrow (m-0,5)^2=\frac{-7}{4}<0$ (vô lý)

Do đó không tồn tại $m$ thỏa mãn yêu cầu.

NV
17 tháng 1 2024

a.

Gọi \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-5;-1\right)\\\overrightarrow{DC}=\left(3-x;-2-y\right)\end{matrix}\right.\)

Do ABCD là hình bình hành \(\Rightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}3-x=-5\\-2-y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\)

\(\Rightarrow D\left(8;-1\right)\)

Gọi O là tâm hình bình hành \(\Rightarrow\) O là trung điểm AC

Theo công thúc trung điểm:

\(\left\{{}\begin{matrix}x_O=\dfrac{x_A+x_C}{2}=\dfrac{7}{2}\\y_O=\dfrac{y_A+y_C}{2}=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow O\left(\dfrac{7}{2};\dfrac{1}{2}\right)\)

b.

Theo công thức trọng tâm: \(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=2\\y_G=\dfrac{y_A+y_B+y_C}{3}=1\end{matrix}\right.\)

\(\Rightarrow G\left(2;1\right)\)

I đối xứng B qua G \(\Rightarrow G\)  là trung điểm IB

\(\Rightarrow\left\{{}\begin{matrix}x_I=2x_G-x_B=5\\y_I=2y_G-y_B=0\end{matrix}\right.\) \(\Rightarrow I\left(5;0\right)\)

\(\left\{{}\begin{matrix}\dfrac{x_A+x_D+x_C}{3}=5=x_I\\\dfrac{y_A+y_D+y_C}{3}=0=y_I\end{matrix}\right.\) \(\Rightarrow I\) là trọng tâm ADC

c.

Ta có: \(S_{ABC}=\dfrac{1}{2}AB.d\left(C;AB\right)\)

\(S_{ABM}=\dfrac{1}{2}AB.d\left(M;AB\right)\)

\(S_{ABC}=3S_{ABM}\Rightarrow d\left(C;AB\right)=3d\left(M;AB\right)\)

\(\Rightarrow BM=\dfrac{1}{3}BC\)

\(\Rightarrow\left[{}\begin{matrix}\overrightarrow{BM}=\dfrac{1}{3}\overrightarrow{BC}\\\overrightarrow{BM}=-\dfrac{1}{3}\overrightarrow{BC}\end{matrix}\right.\)

Gọi \(M\left(x;y\right)\Rightarrow\overrightarrow{BM}=\left(x+1;y-2\right)\)

\(\Rightarrow\left[{}\begin{matrix}\left(x+1;y-2\right)=\dfrac{1}{3}\left(4;-4\right)\\\left(x+1;y-2\right)=-\dfrac{1}{3}\left(4;-4\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left(x;y\right)=\left(\dfrac{1}{3};\dfrac{2}{3}\right)\\\left(x;y\right)=\left(-\dfrac{7}{3};\dfrac{10}{3}\right)\end{matrix}\right.\)