Cho phương trình
\(x^2+x+m=0\)
Tìm m để phương trình (1) có nghiệm x1, x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này nói lại 1 lần k đến lớp 9 tầm lớp 7 nhé!
vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
áp dụng tc dãy tỉ số = nhau
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
=> a=b=c
thay b=a ; c=a
=>bt P= \(\frac{4a+6a+2017a}{4a-6a-2017a}\)
đến đây tự làm típ!
Ta có \(\frac{a}{a+1}=\left(1-\frac{b}{1+b}\right)+\left(1-\frac{c}{1+c}\right)=\frac{1}{1+b}+\frac{1}{1+c}\ge2\sqrt{\frac{1}{\left(1+b\right)\left(1+c\right)}}\left(1\right)\)
CMTT \(\frac{b}{b+1}\ge2\sqrt{\frac{1}{\left(1+a\right)\left(1+c\right)}}\left(2\right)\)
\(\frac{c}{c+1}\ge2\sqrt{\frac{1}{\left(a+1\right)\left(b+1\right)}}\left(3\right)\)
Nhân các vế của (1);(2);(3)
=> \(abc\ge8\)
=> \(ab+bc+ac\ge3\sqrt[3]{a^2b^2c^2}\ge12\)
=> \(Min\left(ab+bc+ac\right)=12\)khi \(a=b=c=2\)
Theo gt ta có:
\(\frac{a}{a+1}=1-\frac{b}{b+1}+1-\frac{c}{c+1}=\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{2}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)
Cmtt ta có: \(\frac{b}{b+1}\ge\frac{2}{\sqrt{\left(a+1\right)\left(c+1\right)}}\)
Nhân theo vế của BĐT trên ta được
\(\frac{ab}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{\left(c+1\right)\sqrt{\left(a+1\right)\left(b+1\right)}}\)
\(\Leftrightarrow ab\ge\frac{4\sqrt{\left(a+1\right)\left(b+1\right)}}{c+1}\)
Tương tự cũng có: \(\hept{\begin{cases}bc\ge\frac{4\sqrt{\left(b+1\right)\left(c+1\right)}}{a+1}\\ca\ge\frac{4\sqrt{\left(c+1\right)\left(a+1\right)}}{b+1}\end{cases}}\)
Cộng lại theo vế 3 BĐT trên và sủ dụng AM-GM ta được
\(P=ab+bc+ca\ge12\)
Dấu "=" xảy ra <=> a=b=c=2
\(2\sqrt{27}-\sqrt{\frac{16}{3}}-\sqrt{48}-\sqrt{8\frac{1}{3}}\)
\(=\sqrt{108}-\frac{4}{\sqrt{3}}-\sqrt{48}-\sqrt{\frac{25}{3}}\)
\(=\sqrt{12}.\sqrt{9}-\frac{4}{\sqrt{3}}-\sqrt{12}.\sqrt{4}-\frac{5}{\sqrt{3}}\)
\(=\left(3\sqrt{12}-2\sqrt{12}\right)-\left(\frac{4}{\sqrt{3}}+\frac{5}{\sqrt{3}}\right)\)
\(=\sqrt{12}-\frac{9}{\sqrt{3}}\)
\(=2\sqrt{3}-3\sqrt{3}\)
\(=-\sqrt{3}\)
\(15x^4+30x^3+13x^2-2x-1=0\)
<=> \(15x^4+15x^3+15x^3+15x^2-2x^2-2x-1=0\)
<=> \(15x^2\left(x^2+x\right)+15x\left(x^2+x\right)-2\left(x^2+x\right)-1\)
<=> \(15\left(x^2+x\right)^2-2\left(x^2+x\right)-1=0\)
<=> \(\orbr{\begin{cases}x^2+x=\frac{1}{3}\\x^2+x=\frac{1}{5}\end{cases}}\)
Em tự giải tiếp nhé!
có thể thu hẹp phạm vi lại không bạn ei!!!! thế này hơi rộng à nhax_x