K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

có thể thu hẹp phạm vi lại không bạn ei!!!! thế này hơi rộng à nhax_x

23 tháng 3 2020

bài này nói lại 1 lần k đến lớp 9 tầm lớp 7 nhé!

vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

áp dụng tc dãy tỉ số = nhau

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

=> a=b=c

thay b=a ; c=a 

=>bt P= \(\frac{4a+6a+2017a}{4a-6a-2017a}\)

đến đây tự làm típ!

29 tháng 3 2020

Ta có \(\frac{a}{a+1}=\left(1-\frac{b}{1+b}\right)+\left(1-\frac{c}{1+c}\right)=\frac{1}{1+b}+\frac{1}{1+c}\ge2\sqrt{\frac{1}{\left(1+b\right)\left(1+c\right)}}\left(1\right)\)

CMTT \(\frac{b}{b+1}\ge2\sqrt{\frac{1}{\left(1+a\right)\left(1+c\right)}}\left(2\right)\)

\(\frac{c}{c+1}\ge2\sqrt{\frac{1}{\left(a+1\right)\left(b+1\right)}}\left(3\right)\)

Nhân các vế của (1);(2);(3) 

=> \(abc\ge8\)

=> \(ab+bc+ac\ge3\sqrt[3]{a^2b^2c^2}\ge12\)

=> \(Min\left(ab+bc+ac\right)=12\)khi \(a=b=c=2\)

12 tháng 4 2020

Theo gt ta có:

\(\frac{a}{a+1}=1-\frac{b}{b+1}+1-\frac{c}{c+1}=\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{2}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)

Cmtt ta có: \(\frac{b}{b+1}\ge\frac{2}{\sqrt{\left(a+1\right)\left(c+1\right)}}\)

Nhân theo vế của BĐT trên ta được

\(\frac{ab}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{\left(c+1\right)\sqrt{\left(a+1\right)\left(b+1\right)}}\)

\(\Leftrightarrow ab\ge\frac{4\sqrt{\left(a+1\right)\left(b+1\right)}}{c+1}\)

Tương tự cũng có: \(\hept{\begin{cases}bc\ge\frac{4\sqrt{\left(b+1\right)\left(c+1\right)}}{a+1}\\ca\ge\frac{4\sqrt{\left(c+1\right)\left(a+1\right)}}{b+1}\end{cases}}\)

Cộng lại theo vế 3 BĐT trên và sủ dụng AM-GM ta được

\(P=ab+bc+ca\ge12\)

Dấu "=" xảy ra <=> a=b=c=2

27 tháng 3 2020

\(2\sqrt{27}-\sqrt{\frac{16}{3}}-\sqrt{48}-\sqrt{8\frac{1}{3}}\)

\(=\sqrt{108}-\frac{4}{\sqrt{3}}-\sqrt{48}-\sqrt{\frac{25}{3}}\)

\(=\sqrt{12}.\sqrt{9}-\frac{4}{\sqrt{3}}-\sqrt{12}.\sqrt{4}-\frac{5}{\sqrt{3}}\)

\(=\left(3\sqrt{12}-2\sqrt{12}\right)-\left(\frac{4}{\sqrt{3}}+\frac{5}{\sqrt{3}}\right)\)

\(=\sqrt{12}-\frac{9}{\sqrt{3}}\)

\(=2\sqrt{3}-3\sqrt{3}\)

\(=-\sqrt{3}\)

23 tháng 3 2020

\(15x^4+30x^3+13x^2-2x-1=0\)

<=> \(15x^4+15x^3+15x^3+15x^2-2x^2-2x-1=0\)

<=> \(15x^2\left(x^2+x\right)+15x\left(x^2+x\right)-2\left(x^2+x\right)-1\)

<=> \(15\left(x^2+x\right)^2-2\left(x^2+x\right)-1=0\)

<=> \(\orbr{\begin{cases}x^2+x=\frac{1}{3}\\x^2+x=\frac{1}{5}\end{cases}}\)

Em tự giải tiếp nhé!