cho tam giác ABC, AB= 5cm, AC=7.5cm, BC=10cm. Trên cạnh AB lấy D sao cho AD=2cm, DE//BC (E thuộc AC), trên cạnh BC lấy F sao cho BF=6cm
a) Tính AE b) Chứng minh: EF//ABHãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Định lí Bezout: Khi chia đa thức P(x) cho nhị thức \(x-a\) thì có số dư là \(P\left(a\right)\).
Áp dụng:
P(x) chia x+1 dư 4 \(\Rightarrow P\left(-1\right)=4\)
P(x) chia x+2 dư 1\(\Rightarrow P\left(-2\right)=1\)
Vì P(x) chia x2+3x+2 được thương là 5x2 nên ta có:
\(P\left(x\right)=\left(x^2+3x+2\right).5x^2+ax+b\left(1\right)\) (a,b là hằng số).
Thay \(x=-1\) vào (1) ta được:
\(P\left(-1\right)=\left(1^2-3.1+2\right).5.1^2-a+b=-a+b\)
\(\Rightarrow b-a=4\left(\cdot\right)\)
Thay \(x=-2\) vào (1) ta được:
\(P\left(-2\right)=\left(2^2-3.2+2\right).5.2^2-a.2+b\)
\(\Rightarrow b-2a=1\left(\cdot\cdot\right)\)
Từ (*), (**) ta có hệ: \(\left\{{}\begin{matrix}b-a=4\\b-2a=1\end{matrix}\right.\)
Giải ra ta được \(\left\{{}\begin{matrix}a=3\\b=7\end{matrix}\right.\)
Vậy \(P\left(x\right)=\left(x^2+3x+2\right).5x^2+3x+7\)
Thay \(x=-10\) vào P(x) ta được:
\(P\left(-10\right)=\left(10^2-3.10+2\right).5.10^2-3.10+7=35977\)
- Đông dân (536 triệu người, 2002).
- Gia tăng dân số khá nhanh. Cơ cấu dân số trẻ.
- Nhiều dân tộc thuộc chủng tộc Môn-gô-lô-it và Ô-xtra-lô-it cùng chung sống.
-> Nguồn lao động dồi dào, thị trường tiêu thụ lớn, giao lưu hợp tác dễ dàng.
- Dân cư phân bố không đều, tập trung chủ yếu ở các đồng bằng và vùng ven biển.
_ Rộng khoảng 4,5 triệu km chia làm 2 phần đất liền và hải đảo
_ Phần đất liền có các dải núi, xem kẽ là thung lũng sông cắt xẻ sâu, làm địa hình chia cắt mạnh
_ Phần hải đảo có nhiều núi, ít đồng bằng
_ Khoáng sản gồm: dầu mỏ, khí tự nhiên, thân đá sắt, thiếc
Khi một đoàn tàu đi qua, đường ray sẽ chịu một áp lực rất lớn vì các đoàn tàu có thể có tổng khối lượng lên đến hàng chục ngàn tấn.Do đó, nhằm đảm bảo áp lực được truyền đều xuống bên dưới mà vẫn giữ cho đường ray ổn định dưới tải trọng của tàu đang chạy, cần có lớp đá dằn để hỗ trợ thêm cho tà vẹt.
\(\left(x-2\right)^3\)+\(\left(x+1\right)^3\)+\(\left(1-2x\right)^3\) = 0
\(x^3-6x^2+12x-8+x^3+3x^2+3x+1+1-6x+12x^2-8x^3\text{=}0\)
\(-6x^3+9x^2+9x-6\text{=}0\)
\(\left(-6x^3-6\right).\left(9x^2+9x\right)\text{=}0\)
\(6\left(-x^2-1\right)+9x\left(x+1\right)\text{=}0\)
\(6\left(x-1\right)\left(x+1\right)+9x\left(x+1\right)\text{=}0\)
\([6(x-1)+9x].\left(x+1\right)\text{=}0\)
\(\left(6x-6+9x\right).\left(x+1\right)\text{=}0\)
\(\left(15x-6\right)\left(x+1\right)\text{=}0\)
\(TH1:15x-6\text{=}0\)
\(15x\text{=}6\)
\(x\text{=}\dfrac{2}{5}\)
\(TH2:x+1\text{=}0\)
\(x\text{=}-1\)
Vậy phương trình một ẩn x có tập nghiệm S \(\in(\dfrac{2}{5};-1)\)
bạn mở rộng, bỏ ngoặc, rút gọn có đa thức 6x3 . ... Đa thức này có nghiệm là - 1, nhẩm ra , bạn chia đa thức 6 x3 .... với (x + 1)
a. \(x\ne5\) là ĐKXĐ của biểu thức P
b. P =\(\dfrac{\left(x-5\right)^2}{x-5}\)=\(x-5\)
c. P = -1 <=> x-5 =-1 <=> x=4
a) Áp dụng định lý Thales trong tam giác ABC, ta có:
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\) . Kết hợp với giả thiết ta được \(\dfrac{2}{5}=\dfrac{AE}{7,5}\) \(\Rightarrow AE=3\)
b) Ta thấy \(\dfrac{AE}{AC}=\dfrac{3}{7,5}=\dfrac{2}{5}\) nhưng \(\dfrac{BF}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\ne\dfrac{AE}{AC}\) nên theo định lý Thales đảo, ta không thể có EF//AB.