Tìm x: \(\left(15x^4+4x^3+11x^2+14x-8\right):\left(5x^2+3x-2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C H D I M K
+ Ta có
M là trung điểm BC (đề bài)
HM=DM (đề bài) => M là trung điểm HD
=> BHCD là hình bình hành (Tứ giá có 2 đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác đó là hbh)
=> BH//CD mà BH vuông góc AC => CD vuông góc AC
+ Từ I dựng đt vuông góc với AC cắt AC tại K
Xét tg ADC có
CD vuông góc AC (cmt)
IK vuông góc AC
=> IK//CD (cùng vuông góc với AC)
Ta cũng có I là trung điểm của AD
=> K là trung điểm của AC (trong 1 tg đường thẳng đi qua trung điểm của 1 cạnh // với 1 cạnh của tg thì đi qua trung điểm của cạnh còn lại) => IK là trung trực thuộc cạnh AC của tg ABC (1)
+ Xét tg AHD có
I là trung điểm của AD (đề bài)
M là trung điểm của HD (cmt)
=> IM là đường trung bình của tg AHD => IM//AH mà AH vuông góc với BC => IM vuông góc với BC => IM là đường trung trực thuộc cạnh BC của tg ABC (2)
Từ (1) và (2) => I là giao của 3 đường trung trực của tg ABC
A B C H M D I
Ta có: I là trung điểm của AD; M là trung điểm HD
=> IM là đường trung bình của tam giác AHD
=> IM //AH mà AH vuông BC ; M là trung điểm BC
=> IM là đường trung trực của BC (1)
Ta có: M là trung điểm BC; M là trung điểm HD
=> HCDB là hình bình hành
=> DC // BH mà BH vuông AC => DC vuông AC
=> Tam giác ACD vuông tại C
=> IC = 1/2 AD=> IC = AI => I thuộc đường trung trực của AC (2)
(1); (2) => I là trung trực của tam giác ABC
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2\left(x-2\right)=x^2-4x-4\)
\(\Leftrightarrow2x-4=x^2-4x-4\)
\(\Leftrightarrow x^2-6x=0\)
\(\Leftrightarrow x\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}\)
vậy........
![](https://rs.olm.vn/images/avt/0.png?1311)
Gợi ý thôi.
\(x^3-ax^2+bx-c=\left(x-a\right)\left(x-b\right)\left(x-c\right)\)
\(\Rightarrow x^3-ax^2+bx-c\)có ba nghiệm \(x=a,x=b,x=c\)
Theo định lí Vi-et:\(\hept{\begin{cases}a+b+c=a\\ab+bc+ca=b\\abc=c\end{cases}\Leftrightarrow}\hept{\begin{cases}b=-c\\ab+bc+ca=b\\c\left(ab-1\right)=0\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có A = (3x + 2)2 + (x2 + y2 - 2xy) - (2x - 2y) + 2015
= (3x + 2)2 + (x - y)2 - 2(x - y) + 1 + 2014
= (3x + 2)2 + (x - y - 1)2 + 2014 \(\ge\)2014
Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x+2=0\\x-y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=x-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=-\frac{5}{3}\end{cases}}\)
Vậy Min A = 2015 <=> x = -2/3 ; y = -5/3
\(A=\left(3x+2\right)^2+x^2+y^2-2xy-2x+2y+2015\)
\(=\left(3x+2\right)^2+\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+2014\)
\(=\left(3x+2\right)^2+\left(x-y\right)^2-2\left(x-y\right)+1+2014\)
\(=\left(3x+2\right)^2+\left(x-y-1\right)^2+2014\)
Vì \(\left(3x+2\right)^2\ge0\forall x\); \(\left(x-y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(3x+2\right)^2+\left(x-y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(3x+2\right)^2+\left(x-y-1\right)^2+2014\ge2014\forall x,y\)
hay \(A\ge2014\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x+2=0\\x-y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=-2\\y=x-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{3}\\y=\frac{-5}{3}\end{cases}}\)
Vậy \(minA=2014\)\(\Leftrightarrow x=-\frac{2}{3}\)và \(y=-\frac{5}{3}\)
sai đề rồi bạn ơi