Tìm giá trị lớn nhất của biểu thức :
A=x2 - 6x + 10
Giúp mình giải với mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^3+3\left(x-1\right)\left(x+1\right)-5x\left(x+1\right)\)
\(=2x^3+3\left(x^2-1\right)-5x^2-5x\)
\(=2x^3+3x^2-3-5x^2-5x\)
\(=2x^3-2x^2-5x-3\)
\(B=\left(5-2x\right)^3-\left(3x+5\right)\left(5-3x\right)\)
\(=125-150x+60x^2-8x^3-\left(25-9x^2\right)\)
\(=125-150x+60x^2-8x^3-25+9x^2\)
\(=100-15x+69x^2-8x^3\)
\(C=\left(3x+1\right)^2-\left(2x-1\right)^2\)
\(=\left(3x+1-2x+1\right)\left(3x+1+2x-1\right)\)
\(=\left(x+2\right).5x\)
\(D=\left(2x+1\right)^2+\left(3-x\right)^2-2\left(2x+1\right)\left(3-x\right)\)
\(=\left(2x+1-3+x\right)^2\)
\(=\left(3x-2\right)^2\)
\(E=\left(x-2\right)^3-x\left(x+1\right)\left(x-1\right)+6x\left(x-3\right)\)
\(=x^3-6x^2+12x-8+x\left(x^2-1\right)+6x^2-18x\)
\(=x^3-6x^2+12x-8+x^3-x+6x^2-18x\)
\(=-7x-8\)
\(F=\left(x-1\right)^3-3\left(1-x\right)\left(x+1\right)-\left(x^2+x+1\right)\left(x-1\right)-3x\)
\(=x^3-3x^2+3x-1-3\left(1-x^2\right)-\left(x^3-1\right)-3x\)
\(=x^3-3x^2+3x-1-3+3x^2-x^3+1-3x\)
\(=-3\)
a) Ta có A = x2 - 2x - 1 = (x2 - 2x + 1) - 2 = (x - 1)2 - 2 \(\ge\) -2
Dấu "=" xảy ra <=> x - 1 = 0 => x = 1
Vậy Min A = -2 <=> x = 1
b) Ta có B = 4x2 + 4x + 8 = (4x2 + 4x + 1) + 7 = (2x + 1)2 + 7 \(\ge\)7
Dấu |"=" xảy ra <=> 2x + 1 = 0 => x = -1/2
Vậy Min B = 7 <=> x = -1/2
c) Ta có C = 3x - x2 + 2
= -(x2 - 3x - 2)
= -(x2 - 3x + 9/4 - 9/4 - 2)
= -[(x - 3/2)2 - 17/4)
= -(x - 3/2)2 + 17/4 \(\le\frac{17}{4}\)
Dấu "=" xảy ra <=> x - 3/2 = 0 => x = 3/2
Vậy Max C = 17/4 <=> x = 3/2
d) Ta có D = -x2 - 5x = -(x2 + 5x) = -(x2 + 5x + 25/4 - 25/4) = -(x + 5/2)2 + 25/4 \(\ge\frac{25}{4}\)
Dấu "=" xảy ra <=> x + 5/2 = 0 => x = -5/2
Vậy Max D = 25/4 <=> x = -5/2
e) Ta có E = x2 - 4xy + 5y2 + 10x - 22y + 28
= (x2 - 4xy + 4y2) + 10x - 20y + y2 - 2y + 28
= (x - 2y)2 + 10(x - 2y) + 25 + (y2 - 2y + 1) + 2
= (x - 2y + 5) + (y - 1)2 + 2 \(\ge\)2
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy Min E = 2 <=> x = -3 ; y = 1
\(A=x^2-2x-1=x^2-2x+1-2=\left(x-1\right)^2-2\ge-2\)
Dấu \(=\)xảy ra khi \(x=1\). Vậy GTNN của \(A\)là \(-2\).
\(B=4x^2+4x+8=4x^2+4x+1+7=\left(2x+1\right)^2+7\ge7\)
Dấu \(=\)xảy ra khi \(x=\frac{-1}{2}\). Vậy GTNN của \(B\)là \(7\).
\(C=-x^2+3x+2=-x^2+2.\frac{3}{2}x-\left(\frac{3}{2}\right)^2+\frac{17}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{17}{4}\le\frac{17}{4}\)
Dấu \(=\) xảy ra khi \(x=\frac{3}{2}\). Vậy GTLN của \(C\)là \(\frac{17}{4}\).
\(D=-x^2-5x=-x^2-2.\frac{5}{2}x-\left(\frac{5}{2}\right)^2+\frac{25}{4}=-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Dấu \(=\)xảy ra khi \(x=\frac{-5}{2}\). Vậy GTLN của \(D\) là \(\frac{25}{4}\).
\(E=x^2-4xy+5y^2+10x-22y+28\)
\(=x^2+4y^2+25-4xy+10x-20y+y^2-2y+1+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \(=\)xảy ra khi \(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\). Vậy GTNN của \(E\) là \(2\).
a) \(A=3x\left(x^2-2x+3\right)-x^2.\left(3x-2\right)+5\left(x^2-x\right)\)
\(=3x^3-6x^2+9x-3x^3+2x^2+5x^2-5x\)
\(=x^2+4x\)
Thay \(x=5\)vào biểu thức ta có: \(A=5^2+4.5=25+20=45\)
b) \(B=x\left(x^2+xy+y^2\right)-y\left(x^2+xy+y^2\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)
Thay \(x=10\); \(y=-1\)vào biểu thức ta có:
\(B=10^3-\left(-1\right)^3=1000+1=1001\)
\(\left(2x+5\right)\left(2x-7\right)-\left(2x-3\right)^2=36\)
\(\Leftrightarrow\left(4x^2+10x-14x-35\right)-\left(4x^2-12x+9\right)=36\)
\(\Leftrightarrow\left(4x^2-4x-35\right)-\left(4x^2-12x+9\right)=36\)
\(\Leftrightarrow4x^2-4x-35-4x^2+12x-9=36\)
\(\Leftrightarrow8x-44=36\)
\(\Leftrightarrow8x=80\)
\(\Leftrightarrow x=10\)
Vậy \(x=10\)
\(A=x^4-6x^3+ax^2+bx+1\)
Để A là bình phương của 1 đa thức thì \(A=\left(x^2+cx+1\right)^2\)
\(\Rightarrow A=x^4+c^2x^2+1+2cx^3+2x^2+2cx\)
\(=x^4+2cx^3+\left(2+c^2\right)x^2+2cx+1\)
Đồng nhất hệ số ta có: \(\hept{\begin{cases}2c=-6\\2+c^2=a\\2c=b\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-3\\2+\left(-3\right)^2=a\\2.\left(-3\right)=b\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-3\\a=2+9\\b=-6\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-3\\a=11\\b=-6\end{cases}}\)
Vậy \(a=11\)và \(b=-6\)
Ta có A = x2 - 6x + 10
= x2 - 6x + 9 + 1
= (x - 3)2 + 1 \(\ge\)1
Dấu "=" xảy ra <=>x - 3 = 0 => x = 3
Vậy Min A = 1 <=> x = 3