Cho (a-2)^2+(b+3)^2=5. Tìm giá trị nhỏ nhất của a+2b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh \(\frac{1}{\left(x+y\right)\left(x+z\right)}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\)
\(\frac{1}{2x+y+z}=\frac{1}{\left(x+y\right)\left(x+z\right)}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\)
\(\le\frac{1}{4}.\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}\right)\)
\(\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
tương tự cộng zế zới zế ta đc
\(\frac{1}{2xx+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)
\(\le\frac{1}{16}.4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)(dpcm
Ta có: \(6x^2+8xy+11y^2=2\left(x-y\right)^2+\left(2x+3y\right)^2\ge\left(2x+3y\right)^2\)
Tương tự: \(6y^2+8yz+11z^2\ge\left(2y+3z\right)^2\)
\(6z^2+8zx+11x^2\ge\left(2z+3x\right)^2\)
=> \(P\le\frac{x^2+3xy+y^2}{2x+3y}+\frac{y^2+3yz+z^2}{2y+3z}+\frac{z^2+3zx+x^2}{2z+3x}\)
=> \(4P\le\frac{4x^2+12xy+4y^2}{2x+3y}+\frac{4y^2+12yz+4z^2}{2y+3z}+\frac{4z^2+12zx+4x^2}{2z+3x}\)
\(=\frac{\left(2x+3y\right)^2-5y^2}{2x+3y}+\frac{\left(2y+3z\right)^2-5z^2}{2y+3z}+\frac{\left(2z+3x\right)^2-5x^2}{2z+3x}\)
\(=5\left(x+y+z\right)-5\left(\frac{y^2}{2x+3y}+\frac{z^2}{2y+3z}+\frac{x^2}{2z+3x}\right)\)
\(\le5\left(x+y+z\right)-5.\frac{\left(x+y+z\right)^2}{5\left(x+y+z\right)}=4\left(x+y+z\right)\)
Lại có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\)với mọi x; y; z
=> \(4P\le4.\sqrt{9}=12\)
=> \(P\le3\)
Dấu "=" xảy ra <=> x = y = z = 1
Vậy max P = 3 đạt tại x = y = z = 1.
Ta có :
\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)
\(\Rightarrow B\sqrt{x}=\sqrt{x}+\frac{2.\sqrt{x}}{\sqrt{x}-1}\)
\(\Rightarrow B\sqrt{x}=\left(\sqrt{x}-1+\frac{2}{\sqrt{x}-1}\right)+3\)
\(\Rightarrow B\sqrt{x}\ge2\sqrt{\left(\sqrt{x}-1\right).\frac{2}{\sqrt{x}-1}}+3\)
\(\Rightarrow B\sqrt{x}\ge2\sqrt{2}+3\)
con chó\
Ta có :
\(P=a+2b=\left(a-2\right)+2\left(b+3\right)-4\)
\(\Rightarrow P+4=\left(a-2\right)+2\left(b+3\right)\)
\(\Rightarrow\left(P+4\right)^2=\left(\left(a-2\right)+2\left(b+3\right)\right)^2\le\left(1^2+2^2\right)\left(\left(a-2\right)^2+\left(b+3\right)^2\right)\)
\(=25\)
\(\Rightarrow-5\le P+4\le5\)
\(\Rightarrow P\ge-9\)
Dấu " = " xảy ra khi \(\frac{a-2}{1}=\frac{b+3}{2},\left(a-2\right)^2+\left(b+3\right)^2=5\)
\(\Rightarrow a-2=-1,b+3=-2\Rightarrow a=1,b=-5\)