(x+4)2+8x(x+4)2+15x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tự nhiên a chia 3 dư 2 => a có dạng 3k + 2 ( k ∈ N )
a2 = ( 3k + 2 )2 = 9k2 + 12k + 4 = 9k2 + 12k + 4
Ta có : 9k2 chia hết cho 3 ; 12k chia hết cho 3 ; 4 chia 3 dư 1
=> 9k2 + 12k + 4 chia 3 dư 1
hay a2 chia 3 dư 1 ( đpcm )
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0\), \(\left(b-c\right)^2\ge0\), \(\left(c-a\right)^2\ge0\)\(\forall a,b,c\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)
Vậy \(a=b=c\)( đpcm )
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Ta có : ( a - b )2 ≥ 0 ∀ a, b ; ( b - c )2 ≥ 0 ∀ b, c ; ( c - a )2 ≥ 0 ∀ c, a
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
Dấu "=" xảy ra khi và chỉ khi a = b = c ( đpcm )
\(2x^4+3x^2-4x^2-6=x^2\left(2x^2+3\right)-2\left(2x^2+3\right)=\left(x^2-2\right)\left(2x^2+3\right)\)
\(=\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(2x^2+3\right)\)
2x4 - x2 - 6
= 2x4 - 4x2 + 3x2 - 6
= ( 2x4 - 4x2 ) + ( 3x2 - 6 )
= 2x2( x2 - 2 ) + 3( x2 - 2 )
= ( x2 - 2 )( 2x2 + 3 )
Ta có
\(a^3+b^3+c^3-3abc=a^3+3a^2b+3ab^2+c^3-3abc-3a^2b-3ab^2\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2+c^2-c\left(a+b\right)-3ab\right]\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
Vậy
\(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ac}=a+b+c\)
PT <=> \(x^2+8x+16+8x\left(x^2+8x+16\right)+15x^2\)
\(=x^2+8x+16+8x^3+64x^2+112+15x^2\)
\(=80x^2+8x^3+128=8\left(10x^2+x^3+16\right)\)