K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2020

Đống này xong r, ko k bất cứ ai trl nx nhé

9 tháng 4 2020

Không ai rảnh bạn nha!!!!

7 tháng 4 2020

Ta có : \(\sqrt{x-5}-\sqrt{4x-20}-\frac{1}{5}.\sqrt{9x-45}=3\)

\(\Leftrightarrow\sqrt{x-5}+\sqrt{4\left(x-5\right)}-\frac{1}{5}\sqrt{9\left(x-5\right)}=3\)

\(\Leftrightarrow\sqrt{x-5}+2\sqrt{x-5}-\frac{3}{5}\sqrt{x-5}=3\left(^∗\right)\)

Đặt \(\sqrt{x-5}=t,\hept{\begin{cases}t>0\\x\ge5\end{cases}}\)

Từ (*) ta có : \(t+2t+\frac{-3}{5}t=3\)

\(\Leftrightarrow5t+10t-3t=15\)

\(\Leftrightarrow t=\frac{5}{4}\left(t/m\right)\)

\(\Leftrightarrow\sqrt{x-5}=\frac{5}{4}\)

\(\Leftrightarrow x-5=\frac{25}{16}\)

\(\Leftrightarrow x=\frac{105}{16}\)

Nghiệm cuối của phương trình là : \(\left\{\frac{105}{16}\right\}\)

7 tháng 4 2020

Giải:

a) Kẻ tiếp tuyến chung tại A cắt DE tại I

Trong đường tròn (O) ta có:

        IA = ID (tính chất hai tiếp tuyến cắt nhau)

Trong đường tròn (O’) ta có:

Quảng cáo

        IA = IE (tính chất hai tiếp tuyến cắt nhau)

Suy ra: IA=ID=IE=12DEIA=ID=IE=12DE

Tam giác ADE có đường trung tuyến AI ứng với cạnh DE và bằng nửa cạnh DE nên tam giác ADE vuông tại A.

Suy ra: ˆEAD=90∘EAD^=90∘

b) Tam giác ABD nội tiếp trong đường tròn (O) có AB là đường kính nên ˆADB=90∘ADB^=90∘ hay ˆAEM=90∘AEM^=90∘

Mặt khác: ˆEAD=90∘EAD^=90∘ (chứng minh trên)

Tứ giác ADME có ba góc vuông nên nó là hình chữ nhật.

c) Tứ giác ADME là hình chữ nhật và ID = IE (chứng minh trên) nên đường chéo

AM của hình chữ nhật phải đi qua trung điểm I của DE. Suy ra: A, I, M thẳng hàng.

Ta có: IA ⊥ OO’ ( vì IA là tiếp tuyến của (O))

Suy ra: AM ⊥ OO’

Vậy MA là tiếp tuyến chung của đường tròn (O) và (O’).

8 tháng 4 2020

Câu a: 

Xét tg CDE có 

CD=CE (BK (C)) => tg CDE cân tại C

KD=KE => CK là trung tuyến tg CAE

=> CK đồng thời là đường cao của tg CDE => CK vuông góc DE (1)

BH vuông góc AC (2)

Từ (1) và (2) => H và K cùng nhìn FC dưới 1 góc vuông => FKCH nội tiếp đường tròn đường kính CF

Câu b: Xem lại đề bài vì nếu AD.AE=AE.AK => AD=AK là vô lý

7 tháng 4 2020

với x, y,z>0

8 tháng 4 2020

Phương trình ( 2 ) \(\Leftrightarrow\left(\frac{3}{x}+\frac{2}{y}+\frac{1}{z}\right)\left(3x+2y+z\right)=36\)

\(\Leftrightarrow6\left(\frac{x}{y}+\frac{y}{x}\right)+3\left(\frac{x}{z}+\frac{z}{x}\right)+2\left(\frac{y}{z}+\frac{z}{y}\right)=22\)

Áp dụng BĐT Cô-si, ta có : 

\(6\left(\frac{x}{y}+\frac{y}{x}\right)\ge12;3\left(\frac{x}{z}+\frac{z}{x}\right)\ge6;2\left(\frac{z}{y}+\frac{y}{z}\right)\ge4\)

\(\Rightarrow6\left(\frac{x}{y}+\frac{y}{x}\right)+3\left(\frac{x}{z}+\frac{z}{x}\right)+2\left(\frac{y}{z}+\frac{z}{y}\right)\ge22\)

Dấu "=" xảy ra khi x = y = z

khi đó : ( 1 ) \(\Leftrightarrow x^3+x^2+x-14=0\)\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+7\right)=0\)

\(\Leftrightarrow x=2\)

Vậy hệ phương trình có nghiệm duy nhất x = y = z = 2

7 tháng 4 2020

a) A,D,C C (O;AD)

=> DC _|_ CA

b) A,B,D C (O;AD)

=> BD _|_ AB

\(\Rightarrow\hept{\begin{cases}BD//CH\left(\perp AB\right)\\BH//CD\left(\perp AC\right)\end{cases}}\)

=> BHCD là hình bình hành

\(\Rightarrow\hept{\begin{cases}BH=DC\\BD=HC\end{cases}}\)

c) Gọi I là giao BC và AD => AI là đường trung tuyến của tam giác ABC và AHD

Mà trọng tâm của tam giác ABC và AHD đều thuộc AI và thỏa mãn \(\frac{AG}{AI}=\frac{2}{3}\)

=> 2 tam giác này cùng trọng tâm

7 tháng 4 2020

a) Xét tam giác DFB có:

\(\hept{\begin{cases}\widehat{D}=90^o\left(DE\perp AB\right)\\\widehat{C}=90^o\end{cases}}\)

=> Tứ giác DFBC nội tiếp

b) Xét tam giác BFG có \(\hept{\begin{cases}\widehat{FBG}=\frac{1}{2}\widebat{AG}\\\widehat{BGF}=\frac{1}{2}\widebat{AE}\end{cases}}\)

Mà cung AB= cùng BG

=> BF=BG 

7 tháng 4 2020

Gọi vận tốc di chuyển của thuyền là x (km/h) (x>0

Vận tốc của cano là x+4 (km/h)

Quãng đường AC là: 78-36=42(km)

Thời gian thuyền đi từ A đến C là: \(\frac{42}{x}\left(h\right)\)

Thời gian cano đi từ B đến C là: \(\frac{36}{x+4}\left(h\right)\)

Theo bài ra ta có: \(\frac{42}{x}-\frac{36}{x+4}=1\)

\(\Leftrightarrow\frac{42\left(x+4\right)-36x}{x\left(x+4\right)}=1\)

<=> 42x+168-36x=x2+4x

<=> -x2+2x+169=0

<=> \(\orbr{\begin{cases}x=14\left(km\right)\\x=-12\left(ktm\right)\end{cases}}\)

Thời gian đi của thuyền là: \(\frac{42}{12}=3\left(h\right)\)

Thời gian đi của cano là: 3-1=2(h)

8 tháng 4 2020

Gọi 2 ẩn cho minh đi các bạn 

7 tháng 4 2020

Đề bài 1 có nhầm chỗ nào không bạn ???

Bài 3 : 

( x2 + ax + b )( x2 + bx + a ) = 0 \(\Leftrightarrow\orbr{\begin{cases}x^2+ax+b=0\left(^∗\right)\\x^2+bx+a=0\left(^∗^∗\right)\end{cases}}\)

\(\left(^∗\right)\rightarrow\Delta=a^2-4b,\)Để phương trình có nghiệm thì  \(a^2-4b\ge0\Leftrightarrow a^2\ge4b\Leftrightarrow\frac{1}{a}\ge\frac{1}{2\sqrt{b}}\left(3\right)\)

\(\left(^∗^∗\right)\rightarrow\Delta=b^2-4a\), Để phương trình có nghiệm thì \(b^2-4a\ge0\Leftrightarrow\frac{1}{b}\ge\frac{1}{2\sqrt{a}}\left(4\right)\)

Cộng ( 3 ) với ( 4 ) ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{2\sqrt{a}}+\frac{1}{2\sqrt{b}}\)

<=> \(\frac{1}{2\sqrt{a}}+\frac{1}{2\sqrt{b}}< \frac{1}{2}\Leftrightarrow\frac{1}{4a}+\frac{1}{4b}< \frac{1}{4}\Leftrightarrow\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)< \frac{1}{4}\Leftrightarrow\frac{1}{8}< \frac{1}{4}\)( luôn luôn đúng với mọi a ,b ) 

7 tháng 4 2020

B3 tui lm đc r, bn lm nhìn rối thế @@ Đề bài ko sai đâu hết nhé bn

7 tháng 4 2020

đề bài hơi lỗi 

Xin các bạn thông cảm!!!!!

7 tháng 4 2020

U. Kip nhanh len