Cho đoạn thẳng BC=5cm. A di động sao AB+AC=6cm
Tìm Max\(\sin\frac{BAC}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán phụ: Cho tam giác ABC có \(\widehat{A}=120^o\). Khi đó BC2=AB2+AC2+AB.AC
Chứng minh: Gọi H là hình chiếu của C trên AB
\(AH=\frac{1}{2}AC;CH=\frac{\sqrt{3}}{2}AC\left(1\right)\)
Theo định lý Pytago, ta có: BC2=BH2+CH2 (2)
Từ (1)(2) => BC2=(AB+AH)2+CH2=\(\left(AB+\frac{1}{2}AC\right)^2+\left(\frac{\sqrt{3}}{2}AC\right)^2\)
\(=AB^2+AB\cdot AC+\frac{1}{4}AC^2+\frac{3}{4}AC^2=AB^2+AC^2+AB\cdot AC\)
Không mất tính tổng quát giả sử M thuộc cung \(\widebat{BC}\) (không chứa A) của (O)
Chứng minh được MA=MB+MC
=> MA2=MB2+MC2+2.MB.MC
=> MA2+MB2+MC2=2(MB2+MC2+MB.MC)(3)
Theo BĐ1 ta có: MB2+MC2+MB.MC=BC2
=> MB2+MC2+MB.MC=3R2
Từ (1) (2) => MA2+MB2+MC2=6R2
*Không vẽ được hình, bạn thông cảm*
Gọi O' là điểm trên IO sao cho \(IO'=\frac{1}{3}IO\)
Xét \(\Delta\)IAO có: \(\frac{IA'}{IA}=\frac{IO'}{IO}\left(=\frac{1}{3}\right)\Rightarrow O'A'//OA\) (định lý Talet đảo)
Do đó: \(\frac{O'A'}{OA}=\frac{IA'}{IA}=\frac{1}{3}\Rightarrow O'A'=\frac{1}{3}R\)
Cmtt ta được: \(O'B'=\frac{1}{3}R;O'C'=\frac{1}{3}R;O'D'=\frac{1}{3}R\)
Vẽ AD là đường phân giác của \(\Delta ABC\)
Vẽ BH _|_ AD, CK _|_ AD (H;K \(\in\) AD)
Ta có: \(\widehat{BAH}=\widehat{CAK}=\frac{\widehat{BAC}}{2}\)
Xét tam giác BAH vuông tại H, theo hệ thức giữa các cạnh và các góc của 1 tam giác vuông ta có:
\(BH=AB\sin\widehat{BAH}=AB\cdot\sin\frac{\widehat{BAC}}{2}\)
Tương tự \(CK=AC\cdot\sin\frac{\widehat{BAC}}{2}\)
\(BH\le BD\left(BH\perp HD\right);CK\le CD\left(CK\perp KD\right)\)
Nên \(BH+CK\le BD+CD=BC\)
Do đó: \(\left(AB+AC\right)\sin\frac{\widehat{BAC}}{2}\le BC\Rightarrow\sin\frac{\widehat{BAC}}{2}\le\frac{5}{6}\)
Dấu "=" xảy ra <=> H,D,K trùng nhau
Vậy GTLN \(\sin\frac{\widehat{BAC}}{2}=\frac{5}{6}\)