Cho lục giác đèu ABCDEF, độ dài mỗi cạnh=c.Các đường thẳng AB và CD cắt nhau tại M, cắt EF theo thứ tự là N và P.
a, Cmr:tam giác MNP đều
b, Tính bán kính đg tròn ngoại tiếp tam giác MNP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ MN là tiếp tuyến của đường tròn (O) (\(N\in\left(O\right)\))
Tứ giác AMNO nội tiếp => \(\widehat{NME}=\widehat{NAO}\)
Mà \(\widehat{NCE}=\widehat{NAB}\)=> Tứ giác MNEC nội tiếp => \(\widehat{DCB}=\widehat{MNE}\)
Mà \(\widehat{MNE}=\widehat{MAE}\left(\Delta MNE=\Delta MAE\right)\)
Mặt khác \(\widehat{MAE}+\widehat{EAO}=\widehat{BAD}+\widehat{OBF}\left(=90^o\right)\). Nên \(\widehat{EAO}=\widehat{OBF}\)
Ta có: \(\Delta OAE=\Delta OBF\left(cgc\right)\)
\(\Rightarrow OE=OF\)