K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 1 2024

Bạn nên viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.

NV
11 tháng 1 2024

Do ĐTHS cắt trục tung tại điểm có tung độ bằng -6 \(\Rightarrow n=-6\)

Do ĐTHS đi qua A, thay tọa độ A vào ta được:

\(\left(-1\right).m-6=-4\)

\(\Rightarrow m=-2\)

Vậy \(\left\{{}\begin{matrix}m=-2\\n=-6\end{matrix}\right.\)

TH
Thầy Hùng Olm
Manager VIP
11 tháng 1 2024

(x+1)(x-5)

NV
11 tháng 1 2024

\(x^2-4x-5=x^2+x-5x-5\)

\(=x\left(x+1\right)-5\left(x+1\right)=\left(x+1\right)\left(x-5\right)\)

AH
Akai Haruma
Giáo viên
13 tháng 1 2024

Bạn cần hỗ trợ bài nào nhỉ?

25 tháng 1 2024

a) Δ���∽Δ���ΔAIEΔACI (g.g) suy ra ����=����ACAI=AIAE hay ��2=��.��AI2=AE.AC (1)

Chứng minh tương tự:

Δ���∽Δ���ΔAIKΔAKB (g.g) suy ra ����=����ABAK=AKAF hay ��2=��.��AK2=AB.AF (2)

Mà Δ���∽Δ���ΔABEΔACF (g.g) suy ra ����=����ACAB=AFAE hay ��.��=��.��AB.AF=AC.AE (3)

Từ (1), (2) và (3) ta có ��2=��2AI2=AK2 suy ra ��=��AI=AK.

b) Vì �^=60∘A=60 suy ra �1^=30∘B1=30

Trong tam giác ���ABE vuông tại E nên ��=12��,AE=21AB,

Trong tam giác ���AFC vuông tại F có �1^=30∘C1=30 suy ra ��=12��AF=21AC.

Do đó, Δ���∽Δ���ΔAEFΔABC (c.g.c).

suy ra ��������=(����)2=14SABCSAEF=(ABAE)2=41.

Vậy ����=14.120=30SAEF=41.120=30 cm22.

11 tháng 1 2024

chào nhé

25 tháng 1 2024

Gọi ��BF cắt ��DC tại K��BE cắt ��DC tại I, và ��EF cắt ��AB tại G.

Δ���ΔFAB có ��DK // ��AB suy ra ����=����ABDK=FAFD (1)

Δ���ΔFAG có ��DH // ��AG suy ra ����=����AGDH=FAFD (2)

Từ (1) và (2) suy ra ����=����ABDK=AGDH hay ����=����DHDK=AGAB (*)

Tương tự Δ���ΔEIC có ��AB // ��IC suy ra ����=����ABIC=EAEC (3)

Δ���ΔEHC có ��HC // ��AB suy ra ����=����AGHC=EAEC (4)

Từ (3) và (4) ta có ����=����ABIC=AGHC hay ����=����HCIC=AGAB (**)

Từ (*) và (**) ta có ����=����DHDK=HCIC.

Mà ��=��DH=HC (gt) suy ra ��=��DK=IC

Mặt khác ��=��BD=BC (gt) nên Δ���ΔBDC cân

Suy ra ���^=���^BDK=BCI

Vậy Δ���=Δ���ΔBDK=ΔBCI (c.g.c)

Suy ra ���^=���^DBK=CBI.

25 tháng 1 2024

a) Δ���ΔABE có ��AM // ��DG suy ra ����=����EGAE=EDEB (1)

Δ���ΔADE có ��AD // ��BK suy ra ����=����EDEB=EAEK (2)

Từ (1) và (2) ta có ����=����EGAE=EAEK nên ��2=��.��AE2=EK.EG.

b) Từ 1��=1��+1��AE1=AK1+AG1 suy ra ����+����=1AKAE+AGAE=1

Δ���ΔADE có ��AD // ��BC suy ra ����=����EKAE=EBED

     ����+��=����+��AE+EKAE=ED+EBED

     ����=����AKAE=DBED (3)

Tương tự Δ���ΔAEB có ��AB // ��DG suy ra ����=����EGAE=EDBE

     ����+��=����+��AE+EGAE=BE+EDBE

     ����=����AGAE=BDBE (4)

Khi đó ����+����=����+����=1AKAE+AGAE=BDED+BDBE=1.

c) Ta có ����=����KCBK=CGAB suy ra ��=��.����BK=CGKC.AB và ����=����ADKC=DGCG.

Suy ra ��=��.����DG=KCAD.CG

Nhân theo vế ta được ��.��=��.��BK.DG=AB.AD không đổi.

a) Δ���ΔABE có ��AM // ��DG suy ra ����=����EGAE=EDEB (1)

Δ���ΔADE có ��AD // ��BK suy ra ����=����EDEB=EAEK (2)

Từ (1) và (2) ta có ����=����EGAE=EAEK nên ��2=��.��AE2=EK.EG.

b) Từ 1��=1��+1��AE1=AK1+AG1 suy ra ����+����=1AKAE+AGAE=1

Δ���ΔADE có ��AD // ��BC suy ra ����=����EKAE=EBED

     ����+��=����+��AE+EKAE=ED+EBED

     ����=����AKAE=DBED (3)

Tương tự Δ���ΔAEB có ��AB // ��DG suy ra ����=����EGAE=EDBE

     ����+��=����+��AE+EGAE=BE+EDBE

     ����=����AGAE=BDBE (4)

Khi đó ����+����=����+����=1AKAE+AGAE=BDED+BDBE=1.

c) Ta có ����=����KCBK=CGAB suy ra ��=��.����BK=CGKC.AB và ����=����ADKC=DGCG.

Suy ra ��=��.����DG=KCAD.CG

Nhân theo vế ta được ��.��=��.��BK.DG=AB.AD không đổi.

25 tháng 1 2024

a) Δ���ΔABE có ��AM // ��DG suy ra ����=����EGAE=EDEB (1)

Δ���ΔADE có ��AD // ��BK suy ra ����=����EDEB=EAEK (2)

Từ (1) và (2) ta có ����=����EGAE=EAEK nên ��2=��.��AE2=EK.EG.

b) Từ 1��=1��+1��AE1=AK1+AG1 suy ra ����+����=1AKAE+AGAE=1

Δ���ΔADE có ��AD // ��BC suy ra ����=����EKAE=EBED

     ����+��=����+��AE+EKAE=ED+EBED

     ����=����AKAE=DBED (3)

Tương tự Δ���ΔAEB có ��AB // ��DG suy ra ����=����EGAE=EDBE

     ����+��=����+��AE+EGAE=BE+EDBE

     ����=����AGAE=BDBE (4)

Khi đó ����+����=����+����=1AKAE+AGAE=BDED+BDBE=1.

c) Ta có ����=����KCBK=CGAB suy ra ��=��.����BK=CGKC.AB và ����=����ADKC=DGCG.

Suy ra ��=��.����DG=KCAD.CG

Nhân theo vế ta được ��.��=��.��BK.DG=AB.AD không đổi.

a) Δ���ΔABE có ��AM // ��DG suy ra ����=����EGAE=EDEB (1)

Δ���ΔADE có ��AD // ��BK suy ra ����=����EDEB=EAEK (2)

Từ (1) và (2) ta có ����=����EGAE=EAEK nên ��2=��.��AE2=EK.EG.

b) Từ 1��=1��+1��AE1=AK1+AG1 suy ra ����+����=1AKAE+AGAE=1

Δ���ΔADE có ��AD // ��BC suy ra ����=����EKAE=EBED

     ����+��=����+��AE+EKAE=ED+EBED

     ����=����AKAE=DBED (3)

Tương tự Δ���ΔAEB có ��AB // ��DG suy ra ����=����EGAE=EDBE

     ����+��=����+��AE+EGAE=BE+EDBE

     ����=����AGAE=BDBE (4)

Khi đó ����+����=����+����=1AKAE+AGAE=BDED+BDBE=1.

c) Ta có ����=����KCBK=CGAB suy ra ��=��.����BK=CGKC.AB và ����=����ADKC=DGCG.

Suy ra ��=��.����DG=KCAD.CG

Nhân theo vế ta được ��.��=��.��BK.DG=AB.AD không đổi.