Tìm x và y biết :
( 3x + 1 ).( 3y + 1 ) = 81
Mong thầy cô giúp con giải bài này ạ .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=6+6^2+6^3+...+6^{99}\)
\(Q=\left(6+6^2+6^3\right)+\left(6^4+6^5+6^6\right)+...+\left(6^{97}+6^{98}+6^{99}\right)\)
\(Q=6\cdot\left(1+6+36\right)+6^4\cdot\left(1+6+36\right)+6^{97}\cdot\left(1+6+36\right)\)
\(Q=43\cdot6+6^4\cdot43+...+6^{97}\cdot43\)
\(Q=43\cdot\left(6+6^4+...+6^{97}\right)\) ⋮ 43
Vậy: Q ⋮ 43
a) \(S=5+5^2+...+5^{2006}\)
\(5S=5^2+5^3+...+5^{2007}\)
\(5S-S=5^2+5^3+...+5^{2007}-5-5^2-...-5^{2006}\)
\(4S=5^{2007}-5\)
\(S=\dfrac{5^{2007}-5}{4}\)
b) Ta có:
\(S=5+5^2+...+5^{2006}\)
\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2005}+5^{2006}\right)\)
\(S=\left(5+25\right)+5^2\cdot\left(5+25\right)+...+5^{2004}\cdot\left(5+25\right)\)
\(S=30+5^2\cdot30+...+5^{2004}\cdot30\)
\(S=30\cdot\left(1+5^2+...+5^{2004}\right)\)
Vậy: S ⋮ 30
\(180=2^2.3^2.5\)
--------
A = {\(x\in N\) | \(x=2k+1,k\in N,k< 4\)}
mỗi hộp có 2 cây : 20:10=2 cây
theo em là vậy thôi chú chả hỉu đề
\(A=4+7+10+13+...+2017+2020+2023\)
Số các số hạng của A là:
\((2023-4):3+1=674(số)\)
Tổng A bằng:
\((2023+4)\cdot674:2=683099\)
Vậy \(A=683099\).
\(4+7+10+13+16+...+2023\)
Số phần tử trong dãy: \(\dfrac{2023-4}{3}+1=674\)
Tổng của dãy trên: \((2023+4)\cdot674:2=683099\)
Nếu là tìm \(x;y\) nguyên để: (3\(x\) + 1).(3y + 1) = 81 thì em làm như này nhé:
(3\(x\) + 1).(3y + 1) = 81 (\(x\); y \(\in\) Z)
3\(x\) + 1 = \(\dfrac{81}{3y+1}\)
3\(x\) = \(\dfrac{81}{3y+1}\) - 1
3\(x\) = \(\dfrac{81-3y-1}{3y+1}\)
3\(x\) = \(\dfrac{80-3y}{3y+1}\)
Vì \(x\) nguyên nên 80 - 3y ⋮ 3y + 1
-3y - 1 + 81 ⋮ 3y + 1
81 ⋮ 3y + 1
3y + 1 \(\in\) Ư(81) = {-81; -27; -9; -3; -1; 1; 3; 9; 27; 81}
y \(\in\) { - \(\dfrac{82}{3}\); - \(\dfrac{28}{3}\); - \(\dfrac{10}{3}\); - \(\dfrac{4}{3}\); - \(\dfrac{2}{3}\); 0; \(\dfrac{2}{3}\); \(\dfrac{8}{3}\); \(\dfrac{26}{3}\); \(\dfrac{80}{3}\)}
Vì y nguyên nên y = 0; 3\(x\) = \(\dfrac{80-3.0}{1}\)
3\(x\) = 80
\(x\) = \(\dfrac{80}{3}\) (loại)
Vậy: (\(x\); y) \(\in\) \(\varnothing\)