Cho phương trình sau:
\(2x^2+\left(m-1\right)x-2=\)0
Tim m để :\(\left(x_1+\frac{1}{2}x_1^2-x_1^3\right)\left(x_2+\frac{1}{2}x^2_2-x^3_2\right)=4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn vào đây tham khảo
Câu hỏi của Mun's Hải's - Toán lớp 9 | Học trực tuyến
~ Vô thông kê của mik để vô link ~
Bài 1 :
M A C D E F N K O B
a.Ta có MC là tiếp tuyến của (O)
\(\Rightarrow MC\perp OC\)
Mà \(MK\perp KD\Rightarrow\widehat{MCO}=\widehat{MKD}=90^0\Rightarrow OCDK\) nội tiếp
b.Vì MC là tiếp tuyến của (O)
\(\Rightarrow\widehat{MCA}=\widehat{MBC}\Rightarrow\Delta MCA~\Delta MBC\left(g.g\right)\)
\(\Rightarrow\frac{MC}{MB}=\frac{MA}{MC}\Rightarrow MC^2=MA.MB\)
c . Vì MO∩(O)=AB \(\Rightarrow AB\) là đường kính của (O)
\(\Rightarrow AC\perp BC\Rightarrow\widehat{BCD}+\widehat{MCA}=90^0\Rightarrow\widehat{BCD}=90^0-\widehat{MCA}\)
Mà \(\widehat{MCA}=\widehat{MBC}\Rightarrow\widehat{MCD}=90^0-\widehat{ABN}=\widehat{BNK}=\widehat{CND}\)
\(\Rightarrow\Delta DCN\) cân
d ) Ta có : \(\widehat{BFD}=90^0=\widehat{BKD}\) vì AB là đường kính của (O)
\(\Rightarrow BKFD\) nội tiếp
\(\Rightarrow\widehat{FDK}=\widehat{KBF}=\widehat{ABC}+\widehat{CBF}=\widehat{MCA}+\widehat{FCD}=\widehat{DCE}\)
\(+\widehat{FCD}=\widehat{FCE}\)
Vì MC là tiếp tuyến của (O)
\(\Rightarrow CEDF\) nội tiếp
Lời giải:
Vì đths y=ax+by=ax+b song song với đường thẳng y=−2xy=−2x nên a=−2a=−2
Đths cần tìm cắt trục hoành tại điểm AA có hoành độ 22. Mà AA nằm trên trục hoành nên tung độ của AA bằng 00. Vậy đths đi qua điểm A(2,0)A(2,0)
Do đó: 0=a.2+b⇔0=(−2).2+b⇒b=40=a.2+b⇔0=(−2).2+b⇒b=4
Vậy (a,b)=(−2,4)
G/s: đồ thị hàm số đi qua điểm \(I\left(x_0;y_0\right)\)cố định
Khi đó với mọi m ta có: \(y_0=\left(2m-3\right)x_0+4m-2\)
<=> \(\left(y_0+3x_0+2\right)-\left(2x_0+4\right)m=0\)
<=> \(\hept{\begin{cases}y_0+3x_0+2=0\\2x_0+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y_0=4\\x_0=-2\end{cases}}\)
Vậy đồ thị hàm số qua điểm I ( -2; 4) cố định
Câu hỏi của Minh Nguyễn Cao - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo tại link trên nhé!