trong mặt phẳng oxy vecto nào dưới đây là một vecto pháp tuyến của đường thẳng d {x=-2-t;y=-1+2t
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\cot\alpha=\frac{1}{2}\Rightarrow\tan\alpha=2\)
\(\Rightarrow\frac{1}{\cos^2\alpha}=1+\tan^2\alpha=5;\frac{1}{\sin^2\alpha}=1+\cot^2\alpha=\frac{5}{4}\)
\(\Rightarrow\cos^2\alpha=\frac{1}{5};\sin^2\alpha=\frac{4}{5}\)
\(P=\sin^2\left(\pi-\alpha\right).\sin\left(\frac{\pi}{2}-\alpha\right).\cos\alpha\)
\(=\sin^2\alpha.\cos^2\alpha=\frac{4}{25}\)
\(\frac{x-1}{x+1}\le0\Leftrightarrow-1< x\le1\Rightarrow S_1=(-1;1]\)
\(-2x+m>0\Leftrightarrow x< \frac{m}{2}\Rightarrow S_2=\left(-\infty;\frac{m}{2}\right)\)
\(S_1\subset S_2\Leftrightarrow\frac{m}{2}>1\Leftrightarrow m>2\)
Vì \(m\in Z;m\in\left[-10;10\right]\) nên \(m=\left\{3;4;5;...;10\right\}\)(8 giá trị)
\(f\left(x\right)=x^2-\left(m+2\right)x+3m-3>0\forall x\in[5;+\infty)\)
\(\hept{\begin{cases}\Delta=\left(m-4\right)^2\ge0\\\frac{m+2}{2}< 5\\f\left(5\right)=12-2m>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< 8\\m< 6\end{cases}}\Leftrightarrow m< 6\)
Vì m nguyên dương nên \(S=\left\{1;2;3;4;5\right\}\). Vậy tổng các phần tử của S bằng 15.
đường đi từ Công viên tới Bể bơi mà không đi qua Rạp chiếu phim ngắn hơn đường đi qua Rạp chiếu phim.
\(P=\frac{x^2+1}{8}+\frac{1}{\sqrt{x^2+1}}+\frac{1}{\sqrt{x^2+1}}\ge3\sqrt[3]{\frac{x^2+1}{8\left(x^2+1\right)}}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{x^2+1}{8}=\frac{1}{\sqrt{x^2+1}}\Leftrightarrow x=\pm\sqrt{3}\)
uống thuốc bổ não để mà giải đi Harry ạ
mua ở mình đi
bán rẻ có 2 Galleon 5 Knut thôi mà