tìm cặp số (x,y) thoă mãn x100- y100= 1 và |x+y| + |x-y|= 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$H=x^3+(2y)^3-x^3(1-y^3)-8y^3+6x^2y^2+12xy+8$
$=x^3+8y^3-x^3+x^3y^3-8y^3+6x^2y^2+12xy+8$
$=(x^3-x^3)+(8y^3-8y^3)+x^3y^3+6x^2y^2+12xy+8$
$=x^3y^3+6x^2y^2+12xy+8$
Pt này có vô số nghiệm nếu ko có thêm yêu cầu gì.
Hoặc ý em là giải pt nghiệm nguyên?
\(m^2+n^2=9m+13n-20\)
\(m^2+n^2-9m-13n=-20\)
\(m^2-9m+20,25+n^2-13n+42,25=-20+20,25+42,25\)
\(\left(m-4,5\right)^2+\left(n-6,5\right)^2=42,5\)
\(A=4\left(a^2+a\right)\left[\left(a+b\right)^2+a+b\right]+b^2\)
\(=4a^2\left(a+b\right)^2+4a^2\left(a+b\right)+4a\left(a+b\right)^2+4a\left(a+b\right)+b^2\)
\(=4a^2\left(a+b\right)^2+4a\left(a+b\right)\left(a+b+1\right)+4a^2\left(a+b\right)+b^2\)
\(=4a^2\left(a+b\right)^2+4a^2\left(a+b+1\right)+4ab\left(a+b+1\right)+4a^2\left(a+b\right)+b^2\)
\(=4a^2\left[\left(a+b\right)^2+a+b+1+a+b\right]+4ab\left(a+b+1\right)+b^2\)
\(=4a^2\left[\left(a+b\right)^2+2\left(a+b\right)+1\right]+4ab\left(a+b+1\right)+b^2\)
\(=4a^2\left(a+b+1\right)^2+4ab\left(a+b+1\right)+b^2\)
\(=\left[2a\left(a+b+1\right)+b\right]^2\)
a.
\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)
\(=\dfrac{x^2+3x+1}{x+1}\)
2.
\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)
Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)
ĐKXĐ: \(\left|x-2\right|-1\ne0\)
\(\Rightarrow\left|x-2\right|\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}x-2\ne1\\x-2\ne-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)
a) Ta có:
\(DF//AC\left(gt\right)\) (1)
\(DE//AB\left(gt\right)\) (2)
Từ (1) và (2) ⇒ AEDF là hình bình hành (3)
Mà AD là phân giác của góc FAE (4)
Từ (3) và (4) ⇒ AEDF là hình thoi
b) Xét hai tam giác CDE và CBA có:
\(\widehat{ACB}\) chung
\(\widehat{CED}=\widehat{CAB}\) (đồng vị vì DE//AB)
\(\Rightarrow\Delta CDE\sim\Delta CBA\left(g.g\right)\)
\(\Rightarrow\dfrac{DE}{AB}=\dfrac{CE}{AC}\Rightarrow DE\cdot AC=CE\cdot AB\)
Do: AEDF là hình thoi nên: DE = AE = AF
\(\Rightarrow AF\cdot AC=\left(AC-AE\right)\cdot AB\)
\(\Rightarrow\left(AB-BF\right)\cdot AC=AC\cdot AB-AE\cdot AB\)
\(\Rightarrow AB\cdot AC-BF\cdot AC=AC\cdot AB-AE\cdot AB\)
\(\Rightarrow BF\cdot AC=AE\cdot AB\)
\(\Rightarrow AF\cdot AB=BF\cdot AC\left(đpcm\right)\)
a) Ta có ME là tia phân giác của góc AMC nên:
\(\dfrac{AM}{AE}=\dfrac{MC}{CE}\Rightarrow\dfrac{AM}{MC}=\dfrac{AE}{CE}\) (1)
MD là tia phân giác của góc AMB nên:
\(\dfrac{AM}{AD}=\dfrac{BM}{BD}\Rightarrow\dfrac{AM}{BM}=\dfrac{AM}{CM}=\dfrac{AD}{BD}\) (vì M là trung điểm của BC nên BM = CM) (2)
Từ (1) và (2) ta có: \(\dfrac{AE}{CE}=\dfrac{AD}{BD}\Rightarrow DE//BC\)
b) Ta có: \(\Delta ADE\sim\Delta ABC\left(g.g\right)\) (vì có DE//BC)
\(\Rightarrow\dfrac{DE}{BC}=\dfrac{AE}{AC}\) (3)
\(\Delta AIE\sim\Delta AMC\left(g.g\right)\) (vì có IE//MC)
\(\Rightarrow\dfrac{IE}{MC}=\dfrac{AE}{AC}\) (4)
Từ (3) và (4) ta có: \(\dfrac{DE}{BC}=\dfrac{IE}{MC}\Rightarrow\dfrac{DE}{IE}=\dfrac{BC}{MC}=2\)
\(\Rightarrow DE=2IE\)
Hay I là trung điểm của DE
a) Vào năm 2000 diện tích đất nông nghiệp ở nước ta là:
Thay t = 0 vào \(S=0,12t+8,97\) (vì t được tính theo số năm kể từ năm 2000) ta có:
\(S=0,12\cdot0+8,97=8,97\left(tr.ha\right)\)
b) Diện tích đất nông nghiệp ở nước ra đạt 10,05 triệu hec-ta ta thay \(S=10,05\) ta có:
\(10,05=0,12t+8,97\)
\(\Leftrightarrow0,12t=10,05-8,97\)
\(\Leftrightarrow0,12t=1,08\)
\(\Leftrightarrow t=1,08:0,12\)
\(\Leftrightarrow t=9\)
Vậy năm nước ta đạt 10,05 triệu héc-ta là: \(2000+9=2009\)
các bạn ơi ở đây có hỏi tiếng việt k
@Rose flower
Có nhé bạn