thực hiện phép tính :
a)17.85+15.17+300
b)32.39+52.21-12.39+21.48
c)175-(3.5^2-3^2.5)
d)99-97+95-93+....+3-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\left(x-2\right)=-100+211\\ 3\left(x-2\right)=111\\ x-2=37\\ x=39.\)
`#3107.101107`
`3(x - 2) = -100 + 211`
`\Rightarrow 3(x - 2) = 111`
`\Rightarrow x - 2 = 111 \div 3`
`\Rightarrow x - 2 = 37`
`\Rightarrow x = 37 + 2`
`\Rightarrow x = 39`
Vậy, `x = 39.`
\(\dfrac{11}{2}-x:\dfrac{1}{2}=\dfrac{1}{4}\\ x:\dfrac{1}{2}=\dfrac{11}{2}-\dfrac{1}{4}\\ x:\dfrac{1}{2}=\dfrac{21}{4}\\ x=\dfrac{21}{4}.\dfrac{1}{2}\\ x=\dfrac{21}{8}\)
Vậy x = \(\dfrac{21}{8}\)
11/2-x:1/2=1/4
x : 1/2 = 11/2 - 1/4
x : 1/2 = 21/4
x = 21/4 x 1/2
x = 21/8
25/13 × 17/19 - 17/19 × 1/13 + 24/13 × 2/19
= (25/13 - 1/13) × 17/19 + 24/13 × 2/19
= 24/13 × 17/19 + 24/13 × 2/19
= 24/13 × (17/19 + 2/19)
= 24/13 × 1
= 24/13
@Phạm Lê Minh Vương Bạn copy phải ghi Tk
Tk = Tham khảo
Và bạn là Chiến Binh yêu cầu không phạm luật của Olm!
Trân trọng!
$450-2\times x=75:5-5$
$\Rightarrow 450-2\times x=15-5$
$\Rightarrow 450-2\times x=10$
$\Rightarrow 2\times x=450-10$
$\Rightarrow 2\times x=440$
$\Rightarrow x=440:2$
$\Rightarrow x=220$
450 - 2 x X = 15 - 5
450 - 2 x X =10
2 x X = 450 - 10
2 x X = 440
X = 440 : 2
X = 220
\(Q=\dfrac{\dfrac{1}{2021}+\dfrac{1}{2022}-\dfrac{1}{2023}}{\dfrac{5}{2021}+\dfrac{5}{2022}-\dfrac{5}{2023}}-\dfrac{\dfrac{2}{2021}+\dfrac{2}{2022}-\dfrac{2}{2023}}{\dfrac{3}{2021}+\dfrac{3}{2022}-\dfrac{3}{2023}}\)
\(=\dfrac{\dfrac{1}{2021}+\dfrac{1}{2022}-\dfrac{1}{2023}}{5\left(\dfrac{1}{2021}+\dfrac{1}{2022}-\dfrac{1}{2023}\right)}-\dfrac{2\left(\dfrac{1}{2021}+\dfrac{1}{2022}-\dfrac{1}{2023}\right)}{3\left(\dfrac{1}{2021}+\dfrac{1}{2022}-\dfrac{1}{2023}\right)}\)
\(=\dfrac{1}{5}-\dfrac{2}{3}=-\dfrac{7}{15}\)
Số tự nhiên lớn nhất có bốn chữ số mà trong đó không có hai chữ số nào giống nhau là: 9876
Ta có: \(E=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}\)
\(3E=1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\)
\(3E-E=\left(1+\dfrac{2}{3}+\dfrac{3}{3^2}+..+\dfrac{100}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}\right)\)
\(2E=1+\dfrac{1}{3}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)
\(6E=3+1+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\)
\(6E-2E=\left(3+1+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\right)-\left(1+\dfrac{1}{3}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\right)\)
\(4E=3-\dfrac{100}{3^{99}}-\dfrac{100}{3^{100}}\)
\(\Rightarrow E=\dfrac{3-\dfrac{100}{3^{99}}-\dfrac{100}{3^{100}}}{4}=\dfrac{3}{4}-\dfrac{\dfrac{100}{3^{99}}+\dfrac{100}{3^{100}}}{4}< \dfrac{3}{4}\) (đpcm)
a) \(17.85+15.17+300\\ =17.\left(85+15\right)+300\\ =17.100+300\\ =1700+300\\ =2000\)
b) \(32.39+52.21-12.39+21.48\\ =39.\left(32-12\right)+21.\left(52+48\right)\\ =39.20+21.100\\ =780+2100=2880\)
c) \(175-\left(3.5^2-3^2.5\right)\\ =175-\left(3.25-9.5\right)\\ =175-\left(75-45\right)\\ =175-30=145\)
d) \(99-97+95-93+...+3-1\\ =\left(99-97\right)+\left(95-93\right)+...+\left(3-1\right)\\ =2+2+...+2\\ =2.25=50\)