. Cho tam giác ABC có AB < AC < BC. Tia phân giác của góc A cắt BC tại D, tia phân giác của góc B cắt AC tại E. Hai tia phân giác AD và BE cắt nhau tại I.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu B:
Xét hai tam giác vuông ABD và HBD, ta có:
∠B1 = ∠B2 ( vì BD là tia phân giác của góc ABC).
Cạnh huyền BD chung
∠BAD = ∠BHD = 90º
Suy ra: ΔABD = ΔHBD (cạnh huyền, góc nhọn)
⇒ AD = HD (2 cạnh tương ứng) (1)
Trong tam giác vuông DHC có ∠DHC = 90o
⇒ DH < DC (cạnh góc vuông nhỏ hơn cạnh huyền) (2)
Từ (1) và (2) suy ra: AD < DC
Có \(B=\frac{x^2+6}{x^2+1}\)\(=\frac{x^2+1}{x^2+1}+\frac{5}{x^2+1}\)
\(=1+\frac{5}{x^2+1}\)
Để B lớn nhất thì \(\frac{5}{x^2+1}\)đạt GTLN
= > \(x^2+1\) đạt GTNN
\(x^2+1\ge1\)
\(\Rightarrow GTLN\)của \(B=6\) khi \(x=0\)
1,tam giác ABC vuông tại A ⇒ B+C=90 ⇒ C= 90-B mà B>45 ⇒ C<45
vậy C<B
2, tam giác ABC vuông tại A nên cạnh BC lớn nhất
AC là cạnh đối diện B, AB là cạnh đối diện C mà B>C nên AC>AB
vậy sắp xếp các cạnh từ lớn đến bé là BC,AC,AB
Bài 1 :
Ta có : \(AC^2=BC^2+AB^2\Rightarrow625=225+400\left(luondung\right)\)
Vậy tam giác ABC vuông tại B
\(f\left(x\right)=2x^2-2x-6-x^2-3x\)
\(=\left(2x^2-x^2\right)-\left(2x+3x\right)-6\)
\(=x^2-5x-6\)
mình mới học lớp 4