Giải hpt
\(\hept{\begin{cases}2x+9y=54\\x+y-x+\frac{x}{2}=11\end{cases}}\)
《THE TOMORROW, ER... DAYLIGHT, ECHOES THROUGH THE SOLITARY RAINY SKY... CHANGING ITS COLOR...!》
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a, b > 0 và ab = 6
\(\frac{a^2+b^2}{|a-b|}\ge4\sqrt{3}\)
<=> \(\left(a-b\right)^2+2ab\ge4\sqrt{3}\left|a-b\right|\)
<=> \(\left(a-b\right)^2-2\left|a-b\right|2\sqrt{3}+12\ge0\)
<=> \(\left(\left|a-b\right|-2\sqrt{3}\right)^2\ge0\)đúng
Dấu "=" xảy ra <=> \(\left|a-b\right|=2\sqrt{3}\Leftrightarrow\left(a+b\right)^2-4ab=12\)
<=> \(a+b=6\) vì a , b > 0
a; b là nghiệm phương trình: X^2 - 6X + 6 = 0 <=> \(X=3+\sqrt{3}\) hoặc \(X=3-\sqrt{3}\)
=> (a ; b) = ( \(3+\sqrt{3};3-\sqrt{3}\)) hoặc ( a; b ) = ( \(3-\sqrt{3};3+\sqrt{3}\))
Vậy \(\frac{a^2+b^2}{|a-b|}\ge4\sqrt{3}\)
a) Ta có : \(\widehat{MOA}=\widehat{O_1}'\left(=180^o-2\widehat{A_1}\right)\)
\(\Rightarrow\)O'N // OM
Gọi P là giao điểm của MN và OO'
Ta có : \(\frac{O'P}{OP}=\frac{O'N}{OM}=\frac{R'}{R}\)
gọi P' là giao điểm của BC và OO',ta có :
\(\frac{O'P'}{OP'}=\frac{O'C}{OB}=\frac{R'}{R}\)
Suy ra \(P'\equiv P\)
b) gọi H là hình chiếu của O' trên OM
tứ giác MNO'O là hình thang nên \(S=\frac{\left(OM+O'N\right)O'H}{2}\)
\(S=\frac{R+R'}{2}.O'H\le\frac{R+R'}{2}.OO'=\frac{\left(R+R'\right)^2}{2}\)
Dấu "=" xảy ra khi \(H\equiv O\Leftrightarrow OM\perp OO'\)
Vậy ...
Áp dụng hệ thức Vi-et,ta có :
m + n = -b ( 1 )
mn = c ( 2 )
b + c = -m ( 3 )
bc = n ( 4 )
từ ( 1 ) và ( 3 ) suy ra c = n
thay vào ( 2 ) và ( 4 ), ta được b = m = 1
từ đó tìm được c = n = -2
Do đó b2 + c2 + m2 + n2 = 10
chi tiết bạn tự làm
\(\hept{\begin{cases}2x+9y=54\\x+y-x+\frac{x}{2}=11\end{cases}}\)
\(\hept{\begin{cases}2x+9y=54\\y+\frac{x}{2}=11\end{cases}}\)
\(\hept{\begin{cases}2x+9y=54\\y=11-\frac{x}{2}\end{cases}}\)
Thay y vào biểu thức 2x + 9y ta đc
\(2x+9\left(11-\frac{x}{2}\right)=54\)
\(\Leftrightarrow2x+99-\frac{9x}{2}=54\)
\(\Leftrightarrow\frac{-5x}{2}+99=54\)
\(\Leftrightarrow\frac{-5x}{2}=-45\)
\(\Leftrightarrow-5x=-90\Leftrightarrow x=18\)
Thay x vào biểu thức \(11-\frac{x}{2}\)ta đc
\(y=11-\frac{18}{2}=11-9=2\)
Vậy \(\left\{x;y\right\}=\left\{18;2\right\}\)
\(\hept{\begin{cases}2x+9y=54\\x+y-x+\frac{x}{2}=11\end{cases}}\)
\(< =>\hept{\begin{cases}2x+9y=54\\y+\frac{x}{2}=11\end{cases}}\)
\(< =>\hept{\begin{cases}9y+2x=54\left(1\right)\\4y+2x=44\left(2\right)\end{cases}}\)
Lấy 1 trừ 2 ta có :
\(\left(9y+2x\right)-\left(4y+2x\right)=54-44=10\)
\(< =>9y-4y=10\)
\(< =>5y=10\)\(< =>y=\frac{10}{5}=2\left(3\right)\)
Thay 3 vào 2 ta được : \(4.2+2x=44\)
\(< =>2\left(4+x\right)=2.22\)
\(< =>4+x=22< =>x=18\)
Vậy nghiệm của hệ phương trình trên là {18;2}