K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2020

gọi lượng nước có trong dung dịch đầu tiền là x lít ; lượng axit có trong dung dịch đầu tiên là y lít ( x,y > 0 )

Sau khi thêm 1 lít axit vào dung dịch thì nồng độ của dung dịch là 40% nên ta có phương trình :

\(\frac{y+1}{x+y+1}=\frac{2}{5}\Leftrightarrow2x-3y=3\)( 1 )

Sau khi thêm vào dung dịch mới 1 lít nước thì nồng độ của dung dịch là \(33\frac{1}{3}\%\)nên ta có phương trình :

\(\frac{y+1}{x+y+2}=\frac{1}{3}\Leftrightarrow x-2y=1\)( 2 )

Từ ( 1 ) và ( 2 ) ta có HPT : \(\hept{\begin{cases}2x-3y=3\\x-2y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}\)

Vậy nồng độ axit trong dung dịch đầu tiền là : \(\frac{x}{x+y}.100\%=\frac{1}{1+3}.100\%=25\%\)

5 tháng 5 2020

Đặt S=\(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{x^2+2xy+y^2}{xy}=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{x^2+y^2}{xy}+2\)

Áp dụng BĐT Cosi ta có: \(x+y\ge2\sqrt{xy}\Leftrightarrow xy< \frac{\left(x+y\right)^2}{4}\)

Do đó \(S\ge\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{4\left(x^2+y^2\right)}{\left(x+y\right)^2}+2\ge2\sqrt{\frac{\left(x+y\right)^2}{x^2+y^2}\cdot\frac{4\left(x^2+y^2\right)}{\left(x+y\right)^2}}+2=6\)

Dấu "=" xảy ra <=> x=y

Vậy MinS=6 đạt được khi x=y

5 tháng 5 2020

Ta có: 

\(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)

\(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{2xy}+\frac{\left(x+y\right)^2}{2xy}\)

\(\ge\left(x+y\right)^2.\frac{4}{\left(x+y\right)^2}+\frac{4xy}{2xy}=6\)

Dấu "=" xảy ra <=> x = y 

Vậy min \(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)= 6 đạt tại x = y.

5 tháng 5 2020

\(\frac{5}{a+b\sqrt{2}}-\frac{4}{a-b\sqrt{2}}+18\sqrt{2}=3\)

<=> \(\frac{5\left(a-b\sqrt{2}\right)}{a^2-2b^2}-\frac{4\left(a+b\sqrt{2}\right)}{a^2-2b^2}+18\sqrt{2}=3\) trục căn thức

<=> \(\frac{5a}{a^2-2b^2}-\frac{5b\sqrt{2}}{a^2-2b^2}-\frac{4a}{a^2-2b^2}-\frac{4b\sqrt{2}}{a^2-2b^2}+18\sqrt{2}=3\)

Vì a; b nguyên => \(\hept{\begin{cases}\frac{5a}{a^2-2b^2}-\frac{4a}{a^2-2b^2}=3\\-\frac{5b\sqrt{2}}{a^2-2b^2}-\frac{4b\sqrt{2}}{a^2-2b^2}+18\sqrt{2}=0\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{a}{a^2-2b^2}=3\\\frac{9b}{a^2-2b^2}=18\end{cases}}\)<=> \(\hept{\begin{cases}\frac{a}{a^2-2b^2}=3\\\frac{b}{a^2-2b^2}=2\end{cases}}\)

Với b = 0 => loại 

Với b khác 0: 

=> \(\frac{a}{b}=\frac{3}{2}\Leftrightarrow a=\frac{3}{2}b\)

=> \(\frac{b}{\frac{9}{4}b^2-2b^2}=2\)=> b = 2 => a = 3  thử lại  thỏa mãn 

Vậy a = 3 và b = 2.

6 tháng 5 2020

\(\frac{5}{a+b\sqrt{2}}-\frac{4}{a-b\sqrt{2}}+18\sqrt{2}=3\)

\(\Leftrightarrow5a-5b\sqrt{2}-4a-4b\sqrt{2}+18\sqrt{2}\left(a^2-2b^2\right)=3\left(a^2-2b^2\right)\)

\(\Leftrightarrow5a-5b\sqrt{2}-4a-4b\sqrt{2}+18a^2\sqrt{2}-36b^2\sqrt{2}=3a^2-6b^2\)

\(\Leftrightarrow\left(18a^2-36b^2-9b\right)\sqrt{2}=3a^2-6b^2-a\)

-Nếu \(18a^2-36b^2-9b\ne0\Rightarrow\sqrt{2}=\frac{3a^2-6b^2-a}{18a^2-36b^2-9b}\)

Vì a,b nguyên nên \(\frac{3a^2-6b^2-a}{18a^2-36b^2-9b}\inℚ\Rightarrow\sqrt{2}\inℚ\)=> Vô lý vì \(\sqrt{2}\)là số vô tỷ

-Vậy ta có: \(18a^2-36b^2-9b=0\Rightarrow\hept{\begin{cases}18a^2-36b^2-9b=0\\3a^2-6b^2-a=0\end{cases}\Rightarrow\hept{\begin{cases}3a^2-6b^2=\frac{3}{2}b\\3a^2-6b^2=2\end{cases}}\Leftrightarrow a=\frac{3}{2}b}\)

Thay a=\(\frac{3}{2}b\)vào \(3a^2-6b^2-a=0\)

ta có \(3\cdot\frac{9}{4}b^2-6b^2-\frac{3}{2}b=0\Leftrightarrow27b^2-6b=0\Leftrightarrow3b\left(b-2\right)=0\)

Ta có b=0 (loại), b=2 (tm) => a=3

Vậy b=2; a=3

5 tháng 5 2020

Gọi x1,x2 là các nghiệm của phương trình đã cho

Áp dụng hệ thức Vi-et,ta có :

x1 + x2 = -5 ; x1x2 = -1

gọi y1,y2 là các nghiệm của phương trình phải lập,ta được :

y1 + y2 = x14 + x24 , y1y2 = x14x24

Ta có : x12 + x22 = ( x1 + x2 )2 - 2x1x2 = 25 + 2 - 27

Do đó : y1 + y2 = x14 + x24 = ( x12 + x22 )2 - 2x12x22 = 729 - 2 = 727

y1y2 = ( x1x2 )4 = 1

Từ đó pt phải lập có dạng : y2 - 727y + 1 = 0

5 tháng 5 2020

Ta co: P = -1 <0 

=> (1) có 2 nghiệm phân biệt khác dấu 

Gọi hai nghiệm đó là \(x_1;x_2\)

=> \(x_1+x_2=-5;x_1.x_2=-1\)

Ta có: \(\left(x_1.x_2\right)^4=\left(-1\right)^4=1\)

\(\left(x_1\right)^4+\left(x_2\right)^4=\left(x_1^2+x_2^2\right)^2-2x_1^2x_2^2=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2x_1^2x_2^2\)

\(=\left[\left(-5\right)^2-2.\left(-1\right)\right]^2-2.\left(-1\right)^2\)

\(=727\)

=> Phương trình có các nghiệm lũy thừa bậc 4 của các nghiệm phương trình (1) là: 

\(x^2-727x+1=0\)

7 tháng 5 2020

\(\Leftrightarrow\Sigma\sqrt{\frac{3a^3}{\left[5a^2+\left(b+c\right)^2\right]\left(a+b+c\right)}}\le1\)

Theo Am-GM: \(VT=\Sigma\sqrt{\frac{3a^2}{5a^2+\left(b+c\right)^2}.\frac{a}{a+b+c}}\le\Sigma\frac{3a^2}{2\left(5a^2+\left(b+c\right)^2\right)}+\frac{1}{2}\)

Như vậy nó là đủ để chứng minh rằng: \(\Sigma\frac{3a^2}{5a^2+\left(b+c\right)^2}\le1\)

Giả sử \(c=min\left\{a,b,c\right\}\) nó tương đương:

$$2\, \left( a-b \right) ^{2} \left( 3\,c+a+b \right)  \left( -c+a+b  \right)  \left( {a}^{2}+2\,ab+{b}^{2}+5\,{c}^{2} \right) +2\,c  \left( a-c \right)  \left( b-c \right)  \left( 3\,{a}^{3}+9\,{a}^{2}b +17\,c{a}^{2}+9\,a{b}^{2}-20\,abc+3\,{c}^{2}a+3\,{b}^{3}+17\,c{b}^{2}+ 3\,{c}^{2}b+{c}^{3} \right)  \geqq 0$$

(Gõ Latex, không hiện thì vô thống kê hỏi đáp xem)

Đây là điều hiển nhiên/

PS: Bài này quan trọng là ý tưởng phá căn thôi chứ không có gì khó. Lúc đầu UCT bất đẳng thức cuối cho đẹp nhưng phải xét các TH mệt lắm, chưa rành nên không làm cách đó:D

7 tháng 5 2020

Chứng minh: \(\Sigma\frac{3a^2}{5a^2+\left(b+c\right)^2}\le1\), cách 2:

Đổi biến sang pqr: (Vô thống kê hỏi đáp xem nếu olm không hiện Latex)

Nếu \(p^2\le4q\) ta cần:

$$2/9\,p \left( 19\,{p}^{2}-36\,q \right)  \left( {p}^{3}-4\,qp+9\,r  \right) -4/9\, \left( {p}^{2}-3\,q \right)  \left( {p}^{2}-4\,q  \right)  \left( 5\,{p}^{2}-3\,q \right) \geqq 0$$

(Hiển nhiên)

Nếu \(p^2\ge4q\) thì cần chứng minh:

$$2\,p \left( 19\,{p}^{2}-36\,q \right) r+2\, \left( {p}^{2}-4\,q  \right)  \left( {p}^{4}-2\,{q}^{2} \right)  \geqq 0$$

(Hiển nhiên)

Từ 2 TH trên ta thu được điều phải chứng minh.

5 tháng 5 2020

Nửa chu vi của hình chữ nhật là :

  36 : 2 = 18(cm)

Gọi x là chiều dài hình chữ nhật(0<x<18) (cm)

    y là chiều rộng hình chữ nhật (0<y<x<18) (cm)

ta có :nếu tăng chiều dài thêm 2cm vá giảm chiều rộng đi 3cm thì diện tích giảm 20\(cm^2\)nên ta có phương trình :

             \(\left(x+2\right)\cdot\left(y-3\right)=20\left(1\right)\)

lại có :nửa chu vi hình chữ nhật là 18cm nên ta có phương trình;

                \(x+y=18\left(2\right)\)

từ (1) và (2) ta có hệ phương trình:

\(\hept{\begin{cases}\left(x+2\right)\cdot\left(y-3\right)=20\\x+y=18\end{cases}}\)

5 tháng 5 2020

\(\hept{\begin{cases}x+2y=5\\3x+4y=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+6y=15\\3x+4y=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2y=10\\3x+4y=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=5\\x=-5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-5\\y=5\end{cases}}\)

Vậy hệ PT có nghiệm duy nhất (x;y) là ( -5;5 )

\(\hept{\begin{cases}x+2y=5\\3x-4y=5\end{cases}}\)

\(\hept{\begin{cases}x=5-2y\\3x-4y=5\end{cases}}\)

Thay x vào biểu thức 3x - 4y ta đc

\(3\left(5-2y\right)-4y=5\)

\(\Leftrightarrow15-6y-4y=5\)

\(\Leftrightarrow2y=10\Leftrightarrow y=5\)

Thay y vào biểu thức 5 -2y ta đc 

\(x=5-2.5=5-10=-5\)

Vậy \(\left\{x;y\right\}=\left\{-5;5\right\}\)

5 tháng 5 2020

chu vi 36cm2 ???

5 tháng 5 2020

chu vi 36cm :vv mình lộn