K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2020

Đáp án:

Giải thích các bước giải:

có x + my = 3 và mx + 4y = 6 

<=> x = 3 - my và m(3 - my ) + 4y = 6 

<=> x = 3 - my và 3m - m²y + 4y = 6 

<=> x = 3 - my và y(4 - m²) = 6 - 3m 

<=> x = 3 - my và y(m² - 4 ) = 3m - 6 (1)

a , để hệ có nghiệm duy nhất thì phương trình (1) có nghiệm duy nhất

nên ta có 

     m² - 4 khác 0 <=> m khác ± 2 

vậy với m khác ± 2 thì hệ đã cho có nghiệm duy nhất

6 tháng 5 2020

Câu hỏi là gì bạn?

5 tháng 5 2020

ĐK: x>=0. Nhận thấy x=0 không phải nghiệm của phương tình chia cả 2 vế cho x ta có:

\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\)

\(\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)

\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)

Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\)thay vào ta có:

\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)

Đối chiếu đk của t

=> t=3 \(\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)

Vậy x={4;1}