Giúp em với ạ, đang cần rất gấppp
Phân tích các đa thức thành nhân tử:
A = x ³ - y ³ + 3xy (x - y) + 1
B = x ³ - 3xy ² + 2y ³
C = (x ² + 8x + 7) (x + 3) (x + 5) + 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left(\frac{1}{x-1}+\frac{x}{x^2-1}\right):\frac{2x+1}{x^2+2x+1}\)
\(=\left(\frac{1}{x-1}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\frac{2x+1}{\left(x+1\right)^2}\)
\(=\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\frac{2x+1}{\left(x+1\right)^2}\)
\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x+1\right)^2}{2x+1}=\frac{x+1}{x-1}\)
b, Thay x = -2 ta được :
\(\frac{x+1}{x-1}=\frac{-2+1}{-2-1}=\frac{1}{3}\)
Vậy A nhận giá trị 1/3
\(A=\left(\frac{1}{x-1}+\frac{x}{x^2-1}\right)\div\frac{2x+1}{x^2+2x+1}\)
\(=\left(\frac{1}{x-1}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right)\div\frac{2x+1}{\left(x+1\right)^2}\)
\(=\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{\left(x+1\right)^2}{2x+1}\)
\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}\times\frac{\left(x+1\right)^2}{2x+1}\)
\(=\frac{x+1}{x-1}\)
Với x = -2 (tmđk) => \(A=\frac{-2+1}{-2-1}=\frac{-1}{-3}=\frac{1}{3}\)
\(1-x-x^2+x^3=\left(1-x\right)-\left(x^2-x^3\right)\)
\(=\left(1-x\right)-x^2\left(1-x\right)=\left(1-x^2\right)\left(1-x\right)\)
\(=\left(1-x\right)\left(x+1\right)\left(1-x\right)=\left(1-x\right)^2\left(x+1\right)\)
a, \(\left(2x-1\right)\left(x+3\right)-2x^2+5x=7\)
\(\Leftrightarrow2x^2+6x-x-3-2x^2+5x=7\)
\(\Leftrightarrow2x^2+5x-3-2x^2+5x=7\)
\(\Leftrightarrow10x-10=0\Leftrightarrow x=1\)
b, \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-4\right)\left(x+4\right)=54\)
\(\Leftrightarrow\left(x^3+27\right)-x\left(x^2-16\right)=54\)
\(\Leftrightarrow x^3+27-x^3+16x=54\)
\(\Leftrightarrow-27+16x=0\Leftrightarrow x=\frac{27}{16}\)
a, \(\left(x+1\right)^2-2\left(x+1\right)\left(y-3\right)+\left(y-3\right)^2=\left[\left(x+1\right)-\left(y-3\right)\right]^2\)
\(=\left(x+1-y+3\right)^2=\left(x-y+4\right)^2\)
b, \(a^2+b^2+2a-2b-2ab=\left(a^2-2ab+b^2\right)+\left(2a-2b\right)\)
\(=\left(a-b\right)^2+2\left(a-b\right)=\left(a-b\right)\left[\left(a-b\right)+2\right]=\left(a-b\right)\left(a-b+2\right)\)