Bài 3 (3 điểm ): Cho ∆ABC nhọn có trung tuyến AD. Gọi M là điểm thuộc tia AD sao cho D là trung điểm của AM.
a) Chứng minh AADC = AMDB. Từ đó suy ra BM//AC.
b) Gọi N là trung điểm của AC. Đường thẳng ND cắt MB tại K. Chứng minh D là trung điểm của KN.
c) Gọi I, E lần lượt là trung điểm của AK và AB. Chứng minh ba đường thẳng AD, CE, NI đồng quy.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có thể lập được 6 số là: 1350, 1530, 3150, 3510, 5130, 5310
Có thể lập được 6 số là: 1350, 1530, 3150, 3510, 5130, 5310
hok tốt
\(\dfrac{2}{3}-\left[-\dfrac{7}{4}-\left(\dfrac{1}{2}+\dfrac{3}{8}\right)\right]\)
\(=\dfrac{2}{3}+\dfrac{7}{4}+\left(\dfrac{1}{2}+\dfrac{3}{8}\right)\)
\(=\dfrac{8}{12}+\dfrac{21}{12}+\dfrac{6}{12}+\dfrac{3}{8}\)
\(=\dfrac{35}{12}+\dfrac{3}{8}=\dfrac{70}{24}+\dfrac{9}{24}=\dfrac{79}{24}\)
\(\dfrac{2}{3}-\left[\dfrac{-7}{4}-\left(\dfrac{1}{2}+\dfrac{3}{8}\right)\right]\\ =\dfrac{2}{3}-\left[\dfrac{-7}{4}-\left(\dfrac{4}{8}+\dfrac{3}{8}\right)\right]\\ =\dfrac{2}{3}-\left(\dfrac{-7}{4}-\dfrac{7}{8}\right)\\ =\dfrac{2}{3}-\left(\dfrac{-14}{8}-\dfrac{7}{8}\right)\\ =\dfrac{2}{3}+\dfrac{21}{8}\\ =\dfrac{16}{24}+\dfrac{63}{24}\\ =\dfrac{79}{24}\)
\(0,5+\dfrac{1}{3}+0,4+\dfrac{5}{7}+\dfrac{1}{6}-\dfrac{4}{35}\)
=\(\left(0,5+0,4\right)+\left(\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{5}{7}-\dfrac{4}{35}\right)\)
= \(0,9+\left(\dfrac{2}{6}+\dfrac{1}{6}\right)+\left(\dfrac{25}{35}-\dfrac{4}{35}\right)\)
= \(0,9+\dfrac{3}{6}+\dfrac{21}{35}\)
= `0,9 +0,5 + 0,6`
= `2`
`(-1/27) . 3/7 + 5/9 . (-3/7)`
`1/27 . (-3/7) + 5/9 . (-3/7)`
`(1/27 + 5/9) . (-3/7)`
`16/27 . (-3/7)`
`-16/63`
(\(\dfrac{3}{7}\)+(\(-\dfrac{3}{7}\))). \(\left(-\dfrac{1}{27}\right)\).\(\dfrac{5}{9}\)
= 0.\(\left(-\dfrac{1}{27}\right)\).\(\dfrac{5}{9}\)
=0
\(3^{x+1}=27\)
\(3^{x+1}=3^3\)
\(\Rightarrow x+1=3\)
\(x=3-1\)
\(x=2\)
Vậy x = 2.
\(#Paciupibijd\)
\(3^{x+1}=27\)
\(\Rightarrow3^{x+1}=3^3\)
\(\Rightarrow x+1=3\)
\(\Rightarrow x=3-1\)
\(\Rightarrow x=2\)
\(a.\dfrac{-3}{7}\cdot\dfrac{15}{13}-\dfrac{3}{7}\cdot\dfrac{11}{13}-\dfrac{3}{7}\\ =-\dfrac{3}{7}\cdot\left(\dfrac{15}{13}+\dfrac{11}{13}+1\right)\\ =-\dfrac{3}{7}\cdot\left(\dfrac{26}{13}+1\right)\\ =\dfrac{-3}{7}\cdot3\\ =\dfrac{-9}{7}\\ b.\dfrac{-1}{9}\cdot\dfrac{-3}{5}+\dfrac{5}{-6}\cdot\dfrac{-3}{5}-\dfrac{7}{2}\cdot\dfrac{3}{5}\\ =-\dfrac{3}{5}\cdot\left(\dfrac{-1}{9}+\dfrac{-5}{6}+\dfrac{7}{2}\right)\\ =-\dfrac{3}{5}\cdot\dfrac{23}{9}\\ =-\dfrac{23}{15}\)
Từ 2 đến 201 số lượng số hạng là: (201 - 2) : 1 + 1 = 200 (số hạng)
Số lượng cặp là: 200 : 2 = 100 (cặp)
1 - 2 + 3 - 4 + 5 - ... + 199 - 200 + 201
= 1 + (-2 + 3) + (-4 + 5) + ... + (-198 + 199) + (-200 + 201)
= 1 + 1 + 1 + ... + 1 + 1
= 1 + 100*1
= 1 + 100
= 101
b: Vì 2n+1;2n+2;2n+3 là ba số tự nhiên liên tiếp
nên \(\left(2n+1\right)\left(2n+2\right)\left(2n+3\right)⋮3\)
g; (\(x-4\))(y + 1) =8
Ư(8) = {- 8; - 4; - 2; -1; 1; 2; 4; 8}
Lập bảng ta có:
\(x\) - 4 | - 8 | - 4 | - 2 | - 1 | 1 | 2 | 4 | 8 |
\(x\) | - 4 | 0 | 2 | 3 | 5 | 6 | 8 | 12 |
y + 1 | - 1 | - 2 | - 4 | - 8 | 8 | 4 | 2 | 1 |
y | - 2 | - 3 | - 5 | - 9 | 7 | 3 | 1 | 0 |
Theo bảng trên ta có:
(\(x\); y) = (- 4; - 2); (0; -3); (2; - 5); (3; - 9); (5; 7); (6; 3); (8; 1); (12; 0)
h; (2\(x\) + 3)(y - 2) = 15
Ư(15) = {- 15; - 5; - 3; - 1; 1; 3; 5; 15}
Lập bảng ta có:
2\(x\) + 3 | - 15 | - 5 | - 1 | 1 | 3 | 5 | 15 |
\(x\) | - 9 | - 4 | - 2 | - 1 | 0 | 1 | 6 |
y - 2 | - 1 | - 3 | - 15 | 15 | 5 | 3 | 1 |
y | 1 | - 1 | - 17 | 13 | 7 | 5 | 3 |
Theo bảng trên ta có:
(\(x;y\)) = (- 9; 1); (- 4; - 1); (- 2; - 13); (- 1; 17); (0; 7); (1; 5); (6; 3)
a: Xét ΔDAC và ΔDMB có
DA=DM
\(\widehat{ADC}=\widehat{MDB}\)(hai góc đối đỉnh)
DC=DB
Do đó: ΔDAC=ΔDMB
=>\(\widehat{DCA}=\widehat{DBM}\)
=>CA//BM
b: Xét ΔDNC và ΔDKB có
\(\widehat{DCN}=\widehat{DBK}\)
DC=DB
\(\widehat{NDC}=\widehat{KDB}\)(hai góc đối đỉnh)
Do đó: ΔDNC=ΔDKB
=>DN=DK
=>D là trung điểm của NK