137+(-40)+2020+(-157)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`67 - [8 + 7 . 3^2 - 24 : 6 + (9 - 7)^3] : 15`
`= 67 - [8 + 7 . 9 - 4 + 2^3] : 15`
`= 67 - [8 + 63 - 4 + 8] : 15`
`= 67 - 75 : 15`
`= 67 - 5`
`=62`
Ta có:
\(10^{2025}=10^{3^4.5^2}=\left(10^{81}\right)^{25}\)
\(10\equiv10\left(mod18\right)\)
\(10^8\equiv10\left(mod18\right)\)
\(10^{80}\equiv\left(10^8\right)^{10}\left(mod18\right)\equiv10^{10}\left(mod18\right)\equiv10\left(mod18\right)\)
\(10^{81}\equiv10^{80}.10\left(mod18\right)\equiv10.10\left(mod18\right)\equiv10\left(mod18\right)\)
\(10^{24}\equiv\left(10^8\right)^3\left(mod18\right)\equiv10^3\left(mod18\right)\equiv10\left(mod18\right)\)
\(10^{25}\equiv10^{24}.10\left(mod18\right)\equiv10\left(mod18\right)\)
\(10^{2025}\equiv\left(10^{81}\right)^{25}\left(mod18\right)\equiv10^{25}\left(mod18\right)\equiv10\left(mod18\right)\)
\(\Rightarrow10^{2025}+8\equiv10+8\left(mod18\right)\equiv0\left(mod18\right)\)
Vậy \(\left(10^{2025}+8\right)⋮18\)
\(5^x+9=134.1^{2010}\)
\(5^x+9=134.1\)
\(5^x+9=134\)
\(5^x=134-9\)
\(5^x=125\)
\(5^x=5^3\)
\(x=3\)
Ta có: \(\left(x-2020\right)^{x+1}-\left(x-2020\right)^{x+11}=0\)
=>\(\left(x-2020\right)^{x+11}-\left(x-2020\right)^{x+1}=0\)
=>\(\left(x-2020\right)^{x+1}\left[\left(x-2020\right)^{10}-1\right]=0\)
=>\(\left[{}\begin{matrix}x-2020=0\\\left(x-2020\right)^{10}=1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x-2020=0\\x-2020=-1\\x-2020=1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=2020\\x=2019\\x=2021\end{matrix}\right.\)
137 + ( - 40 ) + 2020 + ( - 157 )
= 137 - 40 + 2020 - 157
= ( - 157 + 137 ) + 2020 - 40
= - 20 + 2020 - 40
= 2000 - 40
= 1960
137+(-40)+2020+(-157)
=(137-157)+(2020-40)
=-20+2020-40
=2020-60
=1960