K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2023

 a) Ta thấy OI//AH//BK \(\left(\perp CD\right)\).

 Xét hình thang ABKH (AH//BK), O là trung điểm AB. OI//AH \(\left(I\in HK\right)\) nên I là trung điểm HK.

 b) Hạ \(CP\perp AB\) tại P, \(DQ\perp AB\) tại Q. Khi đó IE//CP//DQ \(\left(\perp AB\right)\)

 Xét hình thang CDQP (CP//DQ) có I là trung điểm CD (hiển nhiên), IE//CP và \(E\in PQ\) nên IE là đường trung bình của hình thang CDQP \(\Rightarrow IE=\dfrac{CP+DQ}{2}\)

 Lại có \(S_{ACB}=\dfrac{1}{2}AB.CP\)\(S_{ADB}=\dfrac{1}{2}.AB.DQ\) 

 \(\Rightarrow S_{ACB}+S_{ADB}=AB.\dfrac{CP+DQ}{2}=AB.IE\) (đpcm)

 c) Ta có \(S_{AHKB}=\dfrac{AH+BK}{2}.HK=OI.HK\) 

 Do dây CD có độ dài không đổi nên khoảng cách từ O đến dây CD là OI cũng không đổi. Như vậy ta chỉ cần tìm vị trí của C để HK lớn nhất. 

 Thật vậy, dựng hình bình hành ABLH. Khi đó vì BK//AH nên \(L\in BK\). Đồng thời ta luôn có \(HK\le HL=AB\), suy ra \(S_{AHKB}\le OI.AB\).

 Dấu "=" xảy ra \(\Leftrightarrow HK=HL\)  \(\Leftrightarrow K\equiv L\) \(\Leftrightarrow\) AHKB là hình bình hành \(\Leftrightarrow\) HK//AB hay CD//AB \(\Rightarrow OI\perp AB\). Vậy C là điểm sao cho \(OI\perp AB\).

 (Nếu muốn tìm cụ thể vị trí của C, thì mình nói luôn nó là điểm C sao cho \(sđ\stackrel\frown{AC}=180^o-2arc\cos\left(\dfrac{CD}{AB}\right)\) nhé. Chứng minh cái này dễ, mình nhường lại cho bạn.)

1 tháng 10 2023

Chỗ vị trí C mình sửa lại là \(sđ\stackrel\frown{AC}=90^o-arc\sin\dfrac{CD}{AB}\) nhé.

1 tháng 10 2023

Để rút gọn và tính giá trị của biểu thức A = √(9x^2 - 12x + 4 + 1 - 3x) tại x = 1/3, ta thực hiện các bước sau:

  1. Thay x = 1/3 vào biểu thức: A = √(9(1/3)^2 - 12(1/3) + 4 + 1 - 3(1/3))

  2. Rút gọn biểu thức trong dấu căn: A = √(3 - 4 + 4 + 1 - 1) A = √3

Vậy giá trị của biểu thức A tại x = 1/3 là căn bậc hai của 3, hay A = √3.

1 tháng 10 2023

Xét tam giác ABC vuông tại A ta có:

\(AB^2=BC\cdot BH\)

\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{\left(\dfrac{2}{3}\right)^2}{12}=\dfrac{1}{27}\left(cm\right)\)  

Mà: \(BC=CH+BH\)

\(\Rightarrow CH=12-\dfrac{1}{27}=\dfrac{323}{27}\left(cm\right)\)  

\(AC^2=BC\cdot CH\)

\(\Rightarrow AC=\sqrt{BC\cdot CH}=\sqrt{12\cdot\dfrac{323}{27}}=\dfrac{2\sqrt{323}}{3}\left(cm\right)\) 

Mà: \(AH\cdot BC=AB\cdot AC\)

\(\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{\dfrac{2}{3}\cdot\dfrac{2\sqrt{323}}{3}}{12}=\dfrac{\sqrt{323}}{27}\left(cm\right)\)

29 tháng 9 2023

Ta có \(B\ge\dfrac{\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)^2}{2}\) \(=\dfrac{\left(1+\dfrac{1}{xy}\right)^2}{2}\)

Lại có \(xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{1}{4}\)

\(\Rightarrow B\ge\dfrac{\left(1+4\right)^2}{2}=\dfrac{25}{2}\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Vậy GTNN của B là \(\dfrac{25}{2}\) khi \(x=y=\dfrac{1}{2}\)

 

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

Lời giải:

Áp dụng BĐT Cô-si:

$t(3-t)\leq \left(\frac{t+3-t}{2}\right)^2=\frac{9}{4}$

$\Rightarrow A\geq \frac{4(4t^2+9)}{9t}$

$=\frac{16t^2+36}{9t}=\frac{16t}{9}+\frac{4}{t}$

$\geq 2\sqrt{\frac{16t}{9}.\frac{4}{t}}=\frac{16}{3}$ (tiếp tục áp dụng BĐT Cô-si) 

Vậy $A_{\min}=\frac{16}{3}$. Giá trị này đạt được khi $x=\frac{3}{2}$

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

Lời giải:

a. $AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4$ (cm)
$\cos B=\frac{AB}{BC}=\frac{3}{5}$

$\sin B = \frac{AC}{BC}=\frac{4}{5}$

$\tan B = \frac{AC}{AB}=\frac{4}{3}$

$\cot B = \frac{AB}{AC}=\frac{3}{4}$

b.

$BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+12^2}=13$ (cm) 

$\sin C = \frac{AB}{BC}=\frac{5}{13}$

$\cos C=\frac{AC}{BC}=\frac{12}{13}$

$\tan C=\frac{AB}{AC}=\frac{5}{12}$

$\cot C=\frac{AC}{AB}=\frac{12}{5}$

29 tháng 9 2023

Mình đã làm được rồi