Cho phương trình \(x^2-2x+m-1=0\)
Tìm m để phương trình có 2 nghiệm x1,x2 phân biệt sao cho
a)x1=5x2
b)\(|x_1-x_2|=4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}3x+2\sqrt{3}y=3\\6x-2y\sqrt{3}=-12\end{cases}}\)
\(\Leftrightarrow9x=-9\Rightarrow x=-1\)( bước này là cộng vế nha)
Thay x=-1 vào pt đầu ta có \(-\sqrt{3}+2y=\sqrt{3}\Rightarrow y=\sqrt{3}\)
Chiều dài | Chiều rộng | Diện tích | |
Ban đầu | x | y | 1200 |
Sau đó | x + 5 | y - 10 | 900 |
\(\Rightarrow\)\(\hept{\begin{cases}x.y=1200\\\left(x+5\right)\left(y-10\right)=900\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1200}{y}\\\left(\frac{1200}{y}+5\right)\left(y-10\right)-900=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1200}{y}\\1200-\frac{1200}{y}+5y-50-900=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1200}{y}\\1200y-12000+5y^2-50y-900y=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1200}{y}\\5y^2+250y-12000=0\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=\frac{1200}{y}\\TH1:y=30\left(tm\right),TH2:y=-80\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1200}{30}\\y=30\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=40\\y=30\end{cases}}\)
Vậy chiều dài hcn là 40m
chiều rộng hcn là 30m