Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: x<>1
Để E là số nguyên thì \(3-x⋮x-1\)
=>\(x-3⋮x-1\)
=>\(x-1-2⋮x-1\)
=>\(-2⋮x-1\)
=>\(x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{2;0;3;-1\right\}\)
b: \(E=\dfrac{3-x}{x-1}=\dfrac{-\left(x-3\right)}{x-1}=\dfrac{-\left(x-1-2\right)}{x-1}=-1+\dfrac{2}{x-1}\)
Để E min thì x-1=-1
=>x=0
Ta gọi số đó là : ab
Sau khi thêm số 2 vào số đó sẽ thành ab2
Vậy ab2-ab=677
Ta có phép tính như sau :
Ab2
-
Ab
____
677
Ta thấy 2-b=7 nghĩa là 12-b=7
Vậy b là 5 vì 12-5=7
vậy ta có phép tính : a52-a5=677
vì một số từ năm bằng bảy nên số đó là 5 vì khi thêm 1 vào 7 sẽ thành tám
Vậy ab=75
gọi sô cần tim là ab nếu viết thêm chữ số 2 vào bên phải số đó ta được: ab2 ta có: ab + 677 = ab2 ab + 677 = 10 x ab + 2 675 = 9 x ab ab = 675 : 9 ab = 75 đáp số: 75
Tỉ số giữa giá xăng tháng 4 và giá xăng tháng 3 là:
100%-10%=90%=9/10
Tỉ số giữa giá xăng tháng 5 và giá xăng tháng 3 là:
\(\dfrac{9}{10}\times\left(1+10\%\right)=\dfrac{9}{10}\times\dfrac{11}{10}=\dfrac{99}{100}=99\%=1-1\%\)
=>Giá xăng tháng 3 đắt hơn tháng 5 là 1%
Có \(AC=AD\sqrt{2}=a\sqrt{2}\)
\(SA\perp\left(ABCD\right)\Rightarrow SA\perp AC\) \(\Rightarrow\Delta SAC\) vuông tại A.
\(\Rightarrow SA=\sqrt{SC^2-AC^2}=\sqrt{\left(a\sqrt{3}\right)^2-\left(a\sqrt{2}\right)^2}=a\)
\(\Rightarrow V_{S.ABCD}=\dfrac{1}{3}.S_{ABCD}.SA=\dfrac{1}{3}.AD^2.SA=\dfrac{1}{3}.a^2.a=\dfrac{a^3}{3}\)
a) \(\Delta'=\left(m-2\right)^2-\left(-3m+10\right)=m^2-m-6\)
Để phương trình có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-2\\m\ge3\end{matrix}\right.\) (1)
Theo hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=4-2m\\x_1x_2=-3m+10\end{matrix}\right.\)
Để phương trình có 2 nghiệm x1, x2 đều nhỏ hơn 2 \(\left(x_1\le x_2< 2\right)\) thì:
\(\left\{{}\begin{matrix}\left(x_1-2\right)+\left(x_2-2\right)< 0\\\left(x_1-2\right)\left(x_2-2\right)>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2< 4\\x_1x_2-2\left(x_1+x_2\right)+4>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4-2m< 4\\-3m+10-2\left(4-2m\right)+4>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2m< 0\\m+6>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>-6\end{matrix}\right.\Leftrightarrow m>0\)
Kết hợp với điều kiện (1), ta được: \(m\ge3\)
\(Toru\)
Đây là toán nâng cao chuyên đề hình khối, cấu trúc thi chuyên, thi học sinh giỏi các cấp, thi violympic. Hôm nay Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
a; Thể tích của một hình lập phương nhỏ là:
10 x 10 x 10 = 1000 (cm3)
Thể tích của hình lập phương H là;
1000 x 8 = 8000 (cm3)
Vì 20 x 20 x 20 = 8000
Vậy cạnh của hình lập phương H là: 20 cm
b; Diện tích một mặt của hình lập phương H là:
20x 20 = 400 (cm2)
Diện tích toàn phần của hình lập phương H là:
400 x 6 = 2400(cm2)
Đáp số:a; 8000 cm3
b; 2400 cm2
a: \(\widehat{AOC}+\widehat{AOB}=180^0\)(hai góc kề bù)
=>\(\widehat{AOC}+124^0=180^0\)
=>\(\widehat{AOC}=56^0\)
b:
23,24x5,8-23,24x4,7-15,24-8
=23,24x(5,8-4,7)-23,24
=23,24x1,1-23,24x1
=23,24x0,1=2,324
23,24x5,8-23,24x4,7-15,24-8
=23,24x1,1-23,24x1
=23,24x0,1
=2,324
Câu 6:
a: \(P=\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{2+5\sqrt{x}}{x-4}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{5\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)-5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x-2\sqrt{x}+x+3\sqrt{x}+2-5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2x-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}}{\sqrt{x}+2}\)
b: P>1
=>P-1>0
=>\(\dfrac{2\sqrt{x}-\sqrt{x}-2}{\sqrt{x}+2}>0\)
=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}>0\)
=>\(\sqrt{x}-2>0\)
=>x>4
Câu 9:
a: Xét tứ giác CEHF có \(\widehat{CEH}+\widehat{CFH}=90^0+90^0=180^0\)
nên CEHF là tứ giác nội tiếp
b: Xét ΔABC có
BF,AE là các đường cao
BF cắt AE tại H
Do đó: H là trực tâm của ΔABC
=>CH\(\perp\)AB
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>BD\(\perp\)BA
mà CH\(\perp\)BA
nên CH//BD
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>AC\(\perp\)CD
mà BH\(\perp\)AC
nên BH//CD
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành