Giải các phương trình sau:
a) \(\sqrt{2x-1}+\sqrt{x-1}=5\)
b) \(x^2+2x+7=3\sqrt{\left(x^2+1\right).\left(x+3\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Hệ số 2>0 nên hàm đồng biến
b. Hệ số $1-\sqrt{2}<0$ nên hàm nghịch biến
c. Hệ số $-5<0$ nên hàm nghịch biến
d. Hệ số $1+m^2>0$ với mọi $m\in\mathbb{R}$ nên hàm đồng biến
e. Hệ số $\sqrt{3}-1>0$ nên hàm đồng biến
f. Hệ số $2+m^2>0$ với mọi $m\in\mathbb{R}$ nên hàm đồng biến.
Lời giải:
a. Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10$ (cm)
$AH=2S_{ABC}:BC=AB.AC:BC=6.8:10=4,8$ (cm)
$\sin B = \frac{AC}{BC}=\frac{8}{10}=\frac{4}{5}$
b.
Áp dụng hệ thức lượng trong tam giác vuông ta có:
$BE.BA=BH^2$
$AF.AC=AH^2$
$\Rightarrow BE.BA+AF.AC=BH^2+AH^2=AB^2$ (đpcm)
Thật may câu này tương tự câu cuối trong đề thi HSG 9 tỉnh mình năm 2021-2022 nên biết làm :)) (bài lúc đó y chang thế này chỉ khác là số 2021 với 2022)
Trước tiên ta sẽ chứng minh \(P\left(P\left(x\right)+x\right)=P\left(x\right)P\left(x+1\right)\). Thật vậy, ta có:
\(VP=P\left(x\right)P\left(x+1\right)\)
\(=\left(x^2+mx+n\right)\left[\left(x+1\right)^2+m\left(x+1\right)+n\right]\)
\(=\left(x^2+mx+n\right)\left(x^2+2x+1+mx+m+n\right)\)
\(=\left(x^2+mx+n\right)\left[\left(x^2+mx+n\right)+2x+m+1\right]\)
\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+m\left(x^2+mx+n\right)+x^2+mx+n\)
\(=\left[\left(x^2+mx+n\right)+x\right]^2+m\left(x^2+mx+n+x\right)+n\)
\(=\left[P\left(x\right)+x\right]^2+m\left[P\left(x\right)+x\right]+n\)
\(=P\left(P\left(x\right)+x\right)=VT\)
Vậy đẳng thức được chứng minh.
Từ \(P\left(P\left(x\right)+x\right)=P\left(x\right)P\left(x+1\right)\), chọn \(x=2023\), ta được:
\(P\left(P\left(2023\right)+2023\right)=P\left(2023\right)P\left(2024\right)\)
\(\Rightarrow Q\left(x\right)\) có nghiệm nguyên là \(x=P\left(2023\right)+2023\) (đpcm)
Tứ giác ESTH có \(\widehat{ETH}=\widehat{ESH}=90^o\) nên ESTH nội tiếp.
\(\Rightarrow\widehat{TSH}=\widehat{TEH}=\widehat{FEH}\)
Mà tứ giác AEHF nội tiếp \(\left(\widehat{AFH}=\widehat{AEH}=90^o\right)\) nên \(\widehat{FEH}=\widehat{FAH}\).
Từ đó suy ra \(\widehat{TSH}=\widehat{FAH}\) \(\Rightarrow\) TS//AB.
Mặt khác, tứ giác FTHK nội tiếp \(\left(\widehat{FTH}=\widehat{FKH}=90^o\right)\) nên \(\widehat{FTK}=\widehat{FHK}\) \(=90^o-\widehat{DFH}\) \(=90^o-\widehat{HBD}\) \(=\widehat{BHD}\) \(=\widehat{AHE}\) \(=\widehat{AFE}\) \(=\widehat{AFT}\) nên TK//AB.
Từ đó suy ra K, T, S thẳng hàng (tiên đề Euclid)
Dễ dàng chứng minh tứ giác HKFT nội tiếp: => \(\widehat{HTK}=\widehat{HFK}\)
Dễ dàng chứng minh tứ giác AFDC nội tiếp: => \(\overline{\widehat{HFK}=\widehat{HAE}}\)
Mà \(\widehat{HAE}=\widehat{HES}\) và \(\widehat{HES}+\widehat{HTS}=180\) (Dễ dàng c/m tứ giác HTSE nội tiếp)
Nên \(\widehat{HTK}+\widehat{HTS}=180\)=> 3 điểm K,T,S thẳng hàng
(Nếu chưa học tứ giác nội tiếp thì kéo dài FK và TH cắt tại điểm nào đó rồi chứng minh tam giác đồng dạng và suy ra góc như trên, tứ giác AFDC cũng vậy )
a) đkxđ \(x\ge1\)
pt đã cho \(\Leftrightarrow\left(\sqrt{2x-1}-3\right)+\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\dfrac{2x-10}{\sqrt{2x-1}+3}+\dfrac{x-5}{\sqrt{x-1}+2}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\dfrac{2}{\sqrt{2x-1}+3}+\dfrac{1}{\sqrt{x-1}+2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\left(nhận\right)\\\dfrac{2}{\sqrt{2x-1}+3}+\dfrac{1}{\sqrt{x-1}+3}=0\end{matrix}\right.\)
Hiển nhiên pt thứ 2 vô nghiệm vì \(VT>0\) với mọi \(x\ge1\). Do đó pt đã cho có nghiệm duy nhất là \(x=5\)
b) đkxđ: \(x\ge-3\)
Để ý rằng \(x^2+2x+7=\left(x^2+1\right)+\left(2x+6\right)=\left(x^2+1\right)+2\left(x+3\right)\) nên nếu ta đặt \(\sqrt{x^2+1}=u\left(u\ge1\right)\) và \(\sqrt{x+3}=v\left(v\ge0\right)\) thì pt đã chot rở thành:
\(u^2+2v^2=3uv\)
\(\Leftrightarrow\left(u-v\right)\left(u-2v\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}u=v\\u=2v\end{matrix}\right.\)
Nếu \(u=v\) thì \(\sqrt{x^2+1}=\sqrt{x+3}\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x^2+1=x+3\end{matrix}\right.\)
Mà \(x^2+1=x+3\) \(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\) (nhận)
Nếu \(u=2v\) thì \(\sqrt{x^2+1}=2\sqrt{x+3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x^2+1=4x+12\end{matrix}\right.\)
mà \(x^2+1=4x+12\)\(\Leftrightarrow x^2-4x-11=0\)
\(\Leftrightarrow x=2\pm\sqrt{15}\) (nhận)
Vậy pt đã cho có tập nghiệm \(S=\left\{2;-1;2\pm\sqrt{15}\right\}\)
a) \(\sqrt{2x-1}+\sqrt{x-1}=5\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\left(\sqrt{2x-1}+\sqrt{x-1}\right)^2=5^2\)
\(\Leftrightarrow2x-1+x-1+2\sqrt{\left(2x-1\right)\left(x-1\right)}=25\)
\(\Leftrightarrow3x-2+2\sqrt{\left(2x-1\right)\left(x-1\right)}=25\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)\left(x-1\right)}=\dfrac{27-3x}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{27-3x}{2}\ge0\\\left(2x-1\right)\left(x-1\right)=\left(\dfrac{27-3x}{2}\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}27-3x\ge0\\2x^2-2x-x+1=\dfrac{729-162x+9x^2}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x\le27\\8x^2-12x+4=9x^2-162x+729\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le9\\x^2-150x+725=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le9\\\left[{}\begin{matrix}x-5=0\\x-145=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le9\\\left[{}\begin{matrix}x=5\left(tm\right)\\x=145\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x=5\)