cho tam giác ABC có 3 cạnh là a,b,c và 3 chiều cao tương ứng là ha,hb,hc. Từ điểm O bât kì trong tam giác hạ các đoạn có độ dài x,y,z vuông góc với 3 cạnh a,b,c
CMR:\(\frac{x}{ha}+\frac{y}{hb}+\frac{z}{hc}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giácABD và HBD có
A=H=900
BD chung
ABD=Hbd(BD la p giác goc B)
Suy ra tam giác ABD=HBD (canh huyen. Goc nhon)
=> AD= DH
Tam giac DHC vuong tai H => DC > DH=>DC>AD
b)
Vì L và M đối xứng qua đường thẳng xy . Nên đường thẳng xy là trung trực của ML
I e xy => IM = IL
Nên IM + IL =IL + IN
+ Nếu I là giao điểm của NL và xy thì IL + IN = LN
+ Nếu I không phải là giao điểm NL va xy thì ba điểm I , N, L không thẳng hàng
=> IL + IN = LN
Vậy với mọi vị trí của I trên xy thì IL + IN lớn hơn hoặc bằng LN
k mk nha kb luôn
a) Xét tam giác ABC có CA = CB nên cân tại C
Do đó CI vừa là đường cao vừa là trung tuyến
=> I là trung điểm AB
=> IA = IB
Vậy IA = IB
b) Ta có:
\(IA=\frac{1}{2}AB=\frac{1}{2}.12=6\left(cm\right)\)
\(\Rightarrow IA^2=6^2=36\left(cm\right)\)
Xét tam giác CIA vuông tại I có:
\(CI^2+IA^2=AC^2\)(Định lý Py-ta-go)
\(\Rightarrow IC^2+36=10^2=100\)
\(IC^2=100-36=64=8^2\)
Mà IC>0 nên IC =8
Vậy IC = 8cm
\(IC^2+\)
F.
GỌi G là trong tam cua tgiac ABC
Xét tam giác GBC có
BG+CG>Bc
=>2/3BN+ 2/3CK>Bc
=> 2/3(Bn+CK)>BC
=>BN+CK>3/2Bc. (1)
Cmtt có. AM+BN>3/2 AB (2)
CK+AM >3/2 AC. (3)
Cộng (1),(2),(3) vế theo vế Có
BN+CK+AM+BN+CK+AM>3/2BC+3/2AB+3/2AC
2(AM+BN+CK)>3/2(AB+AB+AC)
AM+BN+CK>3/4(AB+AC+Bc)