K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2022

9943845550525 đáp án nếu đúng cho 1 k nhé

11 tháng 2 2022

=  99438456e+12

11 tháng 2 2022

C nhé bn

11 tháng 2 2022

thanks

11 tháng 2 2022

45/100=9/20

12/36=1/3

18/54=1/3

63/27=21/9

11 tháng 2 2022

21/9=7/3

11 tháng 2 2022

đây mà là toán lớp 2 á, tui lớp 4 còn ko bik

11 tháng 2 2022

5 bạn nhé

11 tháng 2 2022

Ta thấy: \(\frac{a^2}{b}-2a+b=\frac{\left(a-b\right)^2}{b}\)

\(\sqrt{a^2-ab+b^2}-\frac{a+b}{2}=\frac{a^2-ab+b^2-\frac{\left(a+b\right)^2}{b}}{\sqrt{a^2-ab+b^2}+\frac{a+b}{2}}=\frac{3\left(a-b\right)^2}{4\sqrt{a^2-ab+b^2}+2a+2b}\)

Bất đẳng thức tương đương với:

\(\frac{\left(a-b\right)^2}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}\ge\)

\(\frac{3\left(a-b\right)^2}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}+\frac{3\left(b-c\right)^2}{4\sqrt{b^2+c^2-bc}+2\left(b+c\right)}+\frac{3\left(c-a\right)^2}{b\sqrt{c^2+a^2-ca}+2\left(c+a\right)}\)

\(\Leftrightarrow\left(a-b\right)^2\left[\frac{1}{b}-\frac{3}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}\right]+\left(b-c\right)^2\left[\frac{1}{c}-\frac{3}{4\sqrt{b^2+c^2-2bc}+2\left(b+c\right)}\right]\)

\(+\left(c-a\right)^2\left[\frac{1}{c}-\frac{3}{4\sqrt{c^2+a^2-ca}+2\left(c+a\right)}\right]\ge0\)

Ta đặt:

\(A=\frac{1}{b}-\frac{3}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}\)

\(B=\frac{1}{c}-\frac{3}{4\sqrt{b^2+c^2-2bc}+2\left(b+c\right)}\)

\(C=\frac{1}{c}-\frac{3}{4\sqrt{c^2+a^2-ca}+2\left(c+a\right)}\)

Chứng mình sẽ hoàn tất nếu ta chứng minh được A,B,C\(\ge0\), vậy:

\(A=\frac{1}{b}-\frac{3}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}=\frac{4\sqrt{a^2+b^2-2ab}+2a+b}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}\ge0\)

\(B=\frac{1}{c}-\frac{3}{4\sqrt{b^2+c^2-2bc}+2\left(b+c\right)}=\frac{4\sqrt{b^2+c^2-2bc}+2b+c}{4\sqrt{b^2+c^2-2bc}+2\left(b+c\right)}\ge0\)

\(C=\frac{1}{c}-\frac{3}{4\sqrt{c^2+a^2-ca}+2\left(c+a\right)}=\frac{4\sqrt{c^2+a^2-ca}+2c+a}{4\sqrt{c^2+a^2-ca}+2\left(c+a\right)}\ge0\)

Vậy biểu thức đã được chứng mình.

29 tháng 7 2022

a ) \mathbb{R} \backslash (-3; \, 1]R\(3;1]=(-∞;-3]∪(1;+∞)

b) (-\infty; \, 1) \backslash [-2; \, 0](;1)\[2;0]=(- (-\infty; \, 1) \backslash [-2; \, 0]∞;-2)(0;1)

16 tháng 1 2023

tổng đáy bé và đáy lớn hình thang là 

       21 + 17 =48 ( cm)

chiều cao của hình thang là

        336 x 2 : 48 = 14 ( cm)

                             đáp số: 14cm

11 tháng 2 2022

sửa lại đề: -3/7+5/14+4/7=3/12