Giải phương trình
a) \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\)
b) \(\frac{x+3}{2}-\frac{x-1}{3}=1+\frac{x+5}{6}\)
c) \(\frac{3x-2}{6}-5=\frac{3-2\left(x+7\right)}{4}\)
d) \(\frac{x+1}{2019}+\frac{x+2}{2018}=\frac{x+3}{2017}+\frac{x+4}{2016}\)
e) \(\frac{2-x}{2019}-1=\frac{1-x}{2020}-\frac{x}{2021}\)
a, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\)
\(\Leftrightarrow\frac{6x-3}{15}-\frac{5x-10}{15}=\frac{x+7}{15}\)
Khử mẫu : \(6x-3-5x+10=x+7\)
\(\Leftrightarrow7+x=x+7\Leftrightarrow0=0\)( vip :')
d, \(\frac{x+1}{2019}+\frac{x+2}{2018}=\frac{x+3}{2017}+\frac{x+4}{2016}\)
\(\Leftrightarrow\frac{x+1}{2019}+1+\frac{x+2}{2018}+1=\frac{x+3}{2017}+1+\frac{x+4}{2016}+1\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}-\frac{x+2020}{2017}-\frac{x+2020}{2016}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\ne0\right)=0\)
\(\Leftrightarrow x=-2020\)
a,\(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\)
\(\Leftrightarrow\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}=\frac{x+7}{15}\)
\(\Leftrightarrow6x-3-5x+10=x+7\)
\(\Leftrightarrow6x-3-5x+10-x-7=0\)
\(\Leftrightarrow\left(6x-5x-x\right)-\left(3-10+7\right)=0\)
\(\Leftrightarrow0=0\)
Vậy....