Cho\(\Delta ABC\)cân tại A có trung tuyến BD, CE cắt nhau tại G.
a) CMR: BD = CE.
b) \(\Delta GBC\)cân.
c) \(GD+GE>\frac{1}{2}BC.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tam giác cân đường trung tuyến đồng thời là đường cao
\(BM=\dfrac{1}{2}BC=5cm\)
Áp dụng định lí Pytago vào tam giác vuông AMB, ta có:
\(AM=\sqrt{AB-BM}=\sqrt{13^2-5^2}=12cm\)
\(f\left(x\right)=ax^2+bx+c\)
\(f\left(4\right)=a.4^2+b.4+c=16a+4b+c\)
\(f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c=4a-2b+c\)
\(f\left(4\right)-f\left(-2\right)=\left(16a+4b+c\right)-\left(4a-2b+c\right)=12a+6b\)
\(=6\left(2a+b\right)=0\)
\(\Leftrightarrow f\left(4\right)=f\left(-2\right)\)
\(f\left(4\right)+2f\left(-2\right)=\left(16a+4b+c\right)+2\left(4a-2b+c\right)=24a+3c=3\left(8a+c\right)\ne0\)
Suy ra \(f\left(4\right)=f\left(-2\right)\ne0\)suy ra đpcm.
Xét tgiac ACE. ADB:
góc A chung
D=E=90¤
AB=AC
=> Tgiac ACE==ABD (c-h-g-n)
=> BD=CE ( 2ctu) và AE=AD ( sử dụng cho cậu c))
b) BD giao CE tại G=> G là trực tâm tgiac ABC
=> AG vuông góc với BC
c) Xét 2 t giác AEG=ADG ( c-h-c-g-v)
=>GE=GD(2ctu) =>GB=GC=> tgiac GBC cân tại B