cho một HCN có kích thước là a và b. Các tia phân giác các góc của HCN cắt nhau tạo thành một tứ giác. xác định dạng tứ giác đó và tính diện tích
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(x-2\right)\left(x+10\right)}{3}-\frac{\left(x+4\right)\left(x+10\right)}{12}=\frac{\left(x-2\right)\left(x+4\right)}{4}\)
<=> \(\frac{x^2+8x-20}{3}-\frac{x^2+14x+40}{12}-\frac{x^2+2x-8}{4}=0\)
<=> \(\frac{4\left(x^2+8x-20\right)}{12}-\frac{x^2+14x+40}{12}-\frac{3\left(x^2+2x-8\right)}{12}=0\)
<=> \(\frac{4x^2+32x-80}{12}-\frac{x^2+14x+40}{12}-\frac{3x^2+6x-24}{12}=0\)
<=> \(\frac{4x^2+32x-80-x^2-14x-40-3x^2-6x+24}{12}=0\)
<=> \(\frac{12x-96}{12}=0\)
<=> 12x - 96 = 0
<=> 12x = 96
<=> x = 8
\(\frac{\left(5x-1\right)\left(7x-1,1\right)}{3}-\frac{1,5-5x}{7}-\frac{9x-0,7}{4}=0\)
\(\frac{35-5,5x-7x-11}{3}-\frac{1,5-5x}{7}-\frac{9x-0,7}{4}=0\)
\(\frac{24-12,5x}{3}-\frac{1,5-5x}{7}-\frac{9x-0,7}{4}=0\)
\(\frac{28.\left(24-12,5x\right)-12.\left(1,5-5x\right)-21\left(9x-0,7\right)}{84}=0\)
\(\frac{672-350x-18+60x-189x+14,7}{84}=0\)
\(\frac{668,7-479x}{84}=0\)
=> \(\left(668,7-479x\right).\frac{1}{84}=0\)
\(668,7-479x=0\)
\(479x=668,7\)
\(x=139,47\)
Bài mk ko biết có đúng hay ko nữa :((
Sai thì thôi nhé nhớ giúp mk nhé cảm ơn bạn nhìu
\(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\Leftrightarrow\frac{x+1}{35}+1+\frac{x+3}{33}+1=\frac{x+5}{31}+1+\frac{x+7}{29}+1\)
\(\frac{x+36}{35}+\frac{x+36}{33}=\frac{x+36}{31}+\frac{x+36}{29}\Leftrightarrow\left(x+36\right)\left(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\right)=0\)
mà \(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\ne0\) vậy \(x+36=0\Rightarrow x=-36\)
\(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)
\(\Leftrightarrow\frac{x+1}{35}+1+\frac{x+3}{33}+1=\frac{x+5}{31}+1+\frac{x+7}{29}+1\)
\(\Leftrightarrow\frac{x+36}{35}+\frac{x+36}{33}-\frac{x+36}{31}-\frac{x+36}{29}=0\)
\(\Leftrightarrow\left(x+36\right)\left(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\ne0\right)=0\)
\(\Leftrightarrow x=-36\)
\(\frac{\left(x-2\right)\left(x+10\right)}{3}-\frac{\left(x+4\right)\left(x+10\right)}{12}=\frac{\left(x-2\right)\left(x+4\right)}{4}\)
<=> \(\frac{4\left(x^2+10x-2x-20\right)-\left(x^2+10x+4x+40\right)}{12}=\frac{3\left(x^2+4x-2x-8\right)}{12}\)
=> \(4x^2+40x-8x-80-x^2-10x-4x-40=3x^2+12x-6x-24\)
<=> \(4x^2+40x-8x-80-x^2-10x-4x-40-3x^2-12x+6x+24=0\)
<=> \(12x-96=0\)
<=>\(12x=96\)
<=>\(x=8\)
để \(\frac{7}{x^2-x+1}\in Z\Leftrightarrow x^2-x+1\inƯ_7=\left\{\pm1;\pm7\right\}\)
nếu \(x^2-x+1=-7\Leftrightarrow x^2-x+8=0\left(vo nghiem\right)\)
nếu \(x^2-x+1=-1\Leftrightarrow x^2-x +2=0\left(vo nghiem\right)\)
nếu \(x^2-x+1=1\Leftrightarrow x^2-x=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases} }\)
nếu \(x^2-x+1=7\Leftrightarrow x^2-x-6=0\Leftrightarrow\hept{\begin{cases}x=3\\x=-2\end{cases} }\)
vậy \(x\in\left\{-2,0,1,3\right\}\)
Để \(\frac{7}{x^2-x+1}\)ta có : \(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
hay \(7⋮\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Xét từng trường hợp :
TH1 : \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=1\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{1}{4}\Leftrightarrow x-\frac{1}{2}=\pm\frac{1}{2}\)
\(\Leftrightarrow x_1=\frac{1}{2}+\frac{1}{2}=1;x_2=-\frac{1}{2}+\frac{1}{2}=0\)( chọn )
TH2 : \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=-1\Leftrightarrow\left(x-\frac{1}{2}\right)^2=-\frac{7}{4}\)ko thỏa mãn
tương tự 2 trường hợp còn lại
\(\frac{2\left(x-4\right)}{3}+\frac{4\left(x+3\right)-x+1}{8}=\frac{3\left(2x-3\right)}{5}-7\)
<=> \(\frac{2x-8}{3}+\frac{4x+12-x+1}{8}-\frac{6x-9}{5}+7=0\)
<=> \(\frac{40\left(2x-8\right)}{120}+\frac{15\left(3x+13\right)}{120}-\frac{24\left(6x-9\right)}{120}+\frac{840}{120}=0\)
<=> \(\frac{80x-320}{120}+\frac{45x+195}{120}-\frac{144x-216}{120}+\frac{840}{120}=0\)
<=> \(\frac{80x-320+45x+195-144x+216+840}{120}=0\)
<=> \(\frac{-19x+931}{120}=0\)
<=> -19x + 931 = 0
<=> -19x = -931
<=> x = 49
( x - 3 )3 - 2( x - 1 ) = x( x - 2 )2 - 5x2
<=> x3 - 9x2 + 27x - 27 - 2x + 2 = x( x2 - 4x + 4 ) - 5x2
<=> x3 - 9x2 + 25x - 25 = x3 - 4x2 + 4x - 5x2
<=> x3 - 9x2 + 25x - 25 - x3 + 4x2 - 4x + 5x2 = 0
<=> 21x - 25 = 0
<=> 21x = 25
<=> x = 25/21
\(\left(x-3\right)^3-2\left(x-1\right)=x\left(x-2\right)^2-5x^2\)
\(\Leftrightarrow x^3-9x^2+27x-27-2x+2=x\left(x^2-4x+4\right)-5x^2\)
\(\Leftrightarrow x^3-9x^2+25x-25=x^3-4x^2+4x-5x^2\)
\(\Leftrightarrow x^3-9x^2+25x-25-x^3+4x^2-4x+5x^2=0\)
\(\Leftrightarrow21x-25=0\Leftrightarrow x=\frac{25}{21}\)
Tham khảo câu b xem
https://olm.vn/hoi-dap/detail/248753766595.html