Giải phương trình tích: (3x - 5)(x + 2) = x2 - 5x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(PT\Leftrightarrow\left(x-1\right)\left(2x+3\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
( x - 1 )( 2x + 3 ) + 2x = 2
<=> ( x - 1 )( 2x + 3 ) + 2x - 2 = 0
<=> ( x - 1 )( 2x + 3 ) + 2( x - 1 ) = 0
<=> ( x - 1 )( 2x + 3 + 2 ) = 0
<=> ( x - 1 )( 2x + 5 ) = 0
<=> x - 1 = 0 hoặc 2x + 5 = 0
<=> x = 1 hoặc x = -5/2
Vậy tập nghiệm của phương trình là : S = { 1 ; -5/2 }
1) a) \(\frac{x}{x+1}+\frac{x^3-2x^2}{x^3+1}=\frac{x}{x+1}+\frac{x^3-2x^2}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{x^3-2x^2}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x^3-x^2+x+x^3-2x^2}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{2x^3-3x^2+x}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x\left(x-1\right)\left(2x-1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
b) \(\frac{x+1}{2x-2}+\frac{3}{x^2-1}+\frac{x+3}{2x+2}=\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}+\frac{x+3}{2\left(x+1\right)}\)
\(=\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}+\frac{\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}\)
\(=\frac{\left(x+1\right)^2+6+\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}=\frac{x^2+2x+1+6+x^2+2x-3}{2\left(x-1\right)\left(x+1\right)}\)
\(=\frac{2x^2+4x+2}{2\left(x-1\right)\left(x+1\right)}=\frac{2\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}=\frac{x+1}{x-1}\)
2) Ta có A = \(\left(\frac{x^2+y^2}{x^2-y^2}-1\right).\frac{x-y}{4y}=\frac{2y^2}{x^2-y^2}.\frac{x-y}{4y}=\frac{2y^2\left(x-y\right)}{\left(x-y\right)\left(x+y\right).4y}=\frac{y}{2\left(x+y\right)}\)
Thay x = 14 ; y = -15 vào biểu thức ta được
\(A=\frac{y}{2\left(x+y\right)}=\frac{-15}{2\left(14-15\right)}=\frac{-15}{-2}=7,5\)
Tìm GTNN??
Ta có: \(A=\frac{2x^2+2x+7}{x^2+x+1}=\frac{2\left(x^2+x+1\right)+5}{x^2+x+1}=2+\frac{5}{x^2+x+1}\)
(Vì \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\) )
\(\Rightarrow A=2+\frac{5}{x^2+x+1}\le2+\frac{5}{\frac{3}{4}}=\frac{26}{3}\)
Dấu "=" xảy ra khi: x = -1/2
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
\(2A=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{n+1-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}\)
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\)
\(2A=\frac{1}{2}-\frac{1}{n\left(n+1\right)}\)
\(A=\frac{1}{4}-\frac{1}{2n\left(n+1\right)}\)
a3 + b3 + c3 = 3abc
⇒ a3 + b3 + c3 - 3abc = 0
⇒ ( a3 + b3 ) + c3 - 3abc = 0
⇒ ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0
⇒ [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0
⇒ ( a + b + c )[ ( a + b )2 - ( a + b ).c + c2 ] - 3ab( a + b + c ) = 0
⇒ ( a + b + c )( a2 + b2 + c2 - ab - bc - ac ) = 0
Vì a + b + c ≠ 0
⇒ a2 + b2 + c2 - ab - bc - ac = 0
⇒ 2( a2 + b2 + c2 - ab - bc - ac ) = 0
⇒ 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0
⇒ ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - 2ac + c2 ) = 0
⇒ ( a - b )2 + ( b - c )2 + ( a - c )2 = 0
Vì \(\hept{\begin{cases}\left(a-b\right)^2\\\left(b-c\right)^2\\\left(a-c\right)^2\end{cases}}\ge0\forall a,b,c\)⇒ ( a - b )2 + ( b - c )2 + ( a - c )2 ≥ 0 ∀ a,b,c
Dấu "=" xảy ra khi a = b = c
Khi đó \(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{a^2+a^2+a^2}{\left(a+a+a\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)
Từ \(a^3+b^3+c^3=3abc\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)^3-3\left(a+b\right).c\left(a+b+c\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(a+b\right)c-3ab\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ca-3ab-3bc-3ca\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
Vì \(a+b+c\ne0\)\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0\), \(\left(b-c\right)^2\ge0\), \(\left(c-a\right)^2\ge0\)\(\forall a,b,c\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)\(\forall a,b,c\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)
Thay \(a=b=c\)vào N ta có: \(N=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)
Vậy \(N=\frac{1}{3}\)
x2 + 5y2 + 2x - 6y - 4xy + 2 = 0
⇔ ( x2 - 4xy + 4y2 + 2x - 2y + 1 ) + ( y2 - 2y + 1 ) = 0
⇔ ( x - 2y + 1 )2 + ( y - 1 )2 = 0
Vì \(\hept{\begin{cases}\left(x-2y+1\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{cases}}\)⇒ ( x - 2y + 1 )2 + ( y - 1 )2 ≥ 0 ∀ x, y
Dấu "=" xảy ra khi x = y = 1
Khi đó : S = x2020 + ( y - 2 )2021 = 12020 + ( 1 - 2 )2021 = 1 - 1 = 0
a) \(x^2\left(x+1\right)-\left(x+3\right)\left(x^2-3x+9\right)\)
\(=x^3+x^2-x^3-9\)
\(=x^2-9\)
\(=\left(x-3\right)\left(x+3\right)\)
b) \(2\left(x^2-1\right)-\left(x-1\right)^2-\left(x+1\right)^2\)
\(=2\left(x-1\right)\left(x+1\right)-\left(x-1\right)^2-\left(x+1\right)^2\)
\(=-\left[\left(x-1\right)^2-2\left(x-1\right)\left(x+1\right)+\left(x+1\right)^2\right]\)
\(=-\left(x-1-x-1\right)^2\)
\(=-2^2\)
\(=-4\)
( 3x - 5 )( x + 2 ) = x2 - 5x
<=> 3x2 + 6x - 5x - 10 - x2 + 5x = 0
<=> 2x2 + 6x - 10 = 0
Δ = b2 - 4ac = 62 - 4.2.(-10) = 36 + 80 = 116
Δ > 0 nên phương trình có hai nghiệm phân biệt :
\(x_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{-6+\sqrt{116}}{4}=\frac{-3+\sqrt{29}}{2}\)
\(x_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{-6-\sqrt{116}}{4}=\frac{-3-\sqrt{29}}{2}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{\frac{-3\pm\sqrt{29}}{2}\right\}\)
\(\left(3x-5\right)\left(x+2\right)=x^2-5x\)
\(\Leftrightarrow3x^2+6x-5x-10=x^2-5x\)
\(\Leftrightarrow3x^2-x^2+x+5x-10=0\)
\(\Leftrightarrow2x^2+6x-10=0\)
\(\Leftrightarrow2\left(x^2+3x-5\right)=0\Leftrightarrow x^2+3x+5=0\)giải delta ta được :
\(x=\frac{-3\pm\sqrt{29}}{2}\)