K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Tính thể tích tối đa mà cốc có thể chứa:

Cốc nước có dạng hình trụ, vì vậy thể tích của cốc sẽ được tính bằng công thức thể tích của hình trụ:

\(V_{\text{c} \overset{ˊ}{\hat{\text{o}}} \text{c}} = \pi r^{2} h\)

Trong đó:

  • \(r\) là bán kính đáy của cốc,
  • \(h\) là chiều cao của cốc.

Cho trước:

  • Bán kính đáy \(r = 2\) cm,
  • Chiều cao \(h = 12\) cm.

Áp dụng công thức:

\(V_{\text{c} \overset{ˊ}{\hat{\text{o}}} \text{c}} = \pi \times 2^{2} \times 12 = \pi \times 4 \times 12 = 48 \pi \textrm{ } \text{cm}^{3}\)

Vậy thể tích tối đa mà cốc có thể chứa là:

\(V_{\text{c} \overset{ˊ}{\hat{\text{o}}} \text{c}} = 48 \pi \approx 150.8 \textrm{ } \text{cm}^{3}\)

b) Tính mực nước sau khi thả 6 viên bi vào cốc:

Bước 1: Tính thể tích của 6 viên bi:

Viên bi có dạng hình cầu, thể tích của một viên bi được tính theo công thức:

\(V_{\text{bi}} = \frac{4}{3} \pi r^{3}\)

Trong đó:

  • \(r\) là bán kính của viên bi.

Cho trước bán kính viên bi là 1 cm, nên thể tích của một viên bi là:

\(V_{\text{bi}} = \frac{4}{3} \pi \times 1^{3} = \frac{4}{3} \pi \textrm{ } \text{cm}^{3}\)

Vậy thể tích của 6 viên bi là:

\(V_{\text{6}\&\text{nbsp};\text{bi}} = 6 \times \frac{4}{3} \pi = 8 \pi \textrm{ } \text{cm}^{3}\)

Bước 2: Tính mực nước dâng lên trong cốc:

Lượng nước trong cốc sẽ tăng lên do thể tích của các viên bi thả vào. Mỗi viên bi chiếm một thể tích của nước, nên mực nước trong cốc sẽ dâng lên một lượng nhất định.

Giả sử sau khi thả vào, mực nước dâng lên một khoảng \(h_{\text{d} \hat{\text{a}} \text{ng}}\). Mực nước này sẽ tạo thành một hình trụ có bán kính đáy là 2 cm và chiều cao là \(h_{\text{d} \hat{\text{a}} \text{ng}}\). Thể tích của phần nước dâng lên này chính là thể tích của 6 viên bi, tức là \(8 \pi \textrm{ } \text{cm}^{3}\).

Áp dụng công thức thể tích hình trụ để tính mực nước dâng lên:

\(V_{\text{d} \hat{\text{a}} \text{ng}} = \pi r^{2} h_{\text{d} \hat{\text{a}} \text{ng}}\)

Trong đó:

  • \(r = 2\) cm (bán kính đáy của cốc),
  • \(h_{\text{d} \hat{\text{a}} \text{ng}}\) là chiều cao mực nước dâng lên.

Thể tích nước dâng lên là \(8 \pi\), nên ta có:

\(8 \pi = \pi \times 2^{2} \times h_{\text{d} \hat{\text{a}} \text{ng}}\) \(8 \pi = 4 \pi \times h_{\text{d} \hat{\text{a}} \text{ng}}\)

Chia cả hai vế cho \(\pi\):

\(8 = 4 \times h_{\text{d} \hat{\text{a}} \text{ng}}\) \(h_{\text{d} \hat{\text{a}} \text{ng}} = 2 \textrm{ } \text{cm}\)

Kết quả:

Sau khi thả 6 viên bi vào cốc, mực nước trong cốc dâng lên 2 cm. Do đó, mực nước cách miệng cốc là:

\(12 - 8 - 2 = 2 \textrm{ } \text{cm}\)

Vậy mực nước cách miệng cốc 2 cm.

20 tháng 3

2x² + 6x = 0

2x(x + 3) = 0

2x = 0 hoặc x + 3 = 0

*) 2x = 0

x = 0

*) x + 3 = 0

x = -3

Vậy S = {-3; 0}

20 tháng 3

2x² + 6x = 0

2x(x + 3) = 0

2x = 0 hoặc x + 3 = 0

+) 2x = 0

x = 0

+) x + 3 = 0

x = -3

Vậy S = {-3 và 0}

31 tháng 1 2017

Đề thì đúng nhưng đề này là đề học sinh giỏi thì thường quá!

Bạn chỉ cần dùng tứ giác nội tiếp là sẽ ra \(DH\) là phân giác \(\widehat{EDF}\) (tin mình đi). Tương tự với mấy đỉnh kia suy ra đpcm.

31 tháng 1 2017

sai đề rồi đáng lẽ ABC là tam giác đều hoặc các đường cao AD BE CF là những đường trung trực

13 tháng 3

ΔMAB đều \(\Rightarrow \hat{A M B} = 6 0^{0}\)

Theo tính chất 2 tiếp tuyến, ta có MO là phân giác \(\hat{A M B}\)

\(\Rightarrow \hat{A M O} = \frac{1}{2} \hat{A M B} = 3 0^{0}\)

Trong tam giác vuông OAM:

\(t a n \hat{A M O} = \frac{O A}{A M} \Rightarrow O A = A M . t a n \hat{A M O} = 15 \sqrt{3} . t a n 3 0^{0} = 15 \left(\right. c m \left.\right)\)

\(\Rightarrow 2 R = 2 O A = 30 \left(\right. c m \left.\right)\)

 

2:

a: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

nên ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1),(2) suy ra AO là đường trung trực của BC

=>AO\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2=R^2\) không đổi

c: Xét (O) có

\(\widehat{ABM}\) là góc tạo bởi tiếp tuyến BA và dây cung BM

\(\widehat{BNM}\) là góc nội tiếp chắn cung BM

Do đó: \(\widehat{ABM}=\widehat{BNM}\)

Xét ΔABM và ΔANB có

\(\widehat{ABM}=\widehat{ANB}\)

\(\widehat{BAM}\) chung

Do đó: ΔABM~ΔANB

=>\(\dfrac{AB}{AN}=\dfrac{AM}{AB}\)

=>\(AM\cdot AN=AB^2\left(3\right)\)

Xét ΔOBA vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(4\right)\)

Từ (3),(4) suy ra \(AM\cdot AN=AH\cdot AO\)

Gọi I là giao điểm của BA và CD

Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

=>BC\(\perp\)DI tại C

=>ΔBCI vuông tại C

Ta có: \(\widehat{ACI}+\widehat{ACB}=\widehat{BCI}=90^0\)

\(\widehat{AIC}+\widehat{ABC}=90^0\)(ΔBCI vuông tại C)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔBCA cân ạti A)

nên \(\widehat{ACI}=\widehat{AIC}\)

=>AI=AC

mà AB=AC

nên AB=AI(5)

TA có: CE\(\perp\)BD

IB\(\perp\)BD

Do đó: CE//IB

Xét ΔDAB có EK//AB

nên \(\dfrac{EK}{AB}=\dfrac{DK}{DA}\left(6\right)\)

Xét ΔDAI có KC//AI

nên \(\dfrac{KC}{AI}=\dfrac{DK}{DA}\left(7\right)\)

Từ (5),(6),(7) suy ra EK=KC

=>K là trung điểm của EC