K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{\left(x^2+8x+7\right)\left(x+3\right)\left(x+5\right)+15}{x^3+8x^2+10x}\)

\(=\dfrac{\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15}{x\left(x^2+8x+10\right)}\)

\(=\dfrac{\left(x^2+8x\right)^2+22\left(x^2+8x\right)+105+15}{x\left(x^2+8x+10\right)}\)

\(=\dfrac{\left(x^2+8x\right)^2+22\left(x^2+8x\right)+120}{x\left(x^2+8x+10\right)}=\dfrac{\left(x^2+8x+10\right)\left(x^2+8x+12\right)}{x\left(x^2+8x+10\right)}\)

\(=\dfrac{x^2+8x+12}{x}\)

8 tháng 1

Olm chào em, em cần làm gì với biểu thức này?

8 tháng 1

P=a 2 +b 2 +ab−20a−19b+2151 Bước 1: Phân tích biểu thức và áp dụng phương pháp đạo hàm Ta có thể tìm giá trị nhỏ nhất của biểu thức 𝑃 P bằng cách tính các đạo hàm riêng của 𝑃 P theo 𝑎 a và 𝑏 b, sau đó giải hệ phương trình. Bước 2: Tính đạo hàm riêng của 𝑃 P Đạo hàm riêng của 𝑃 P theo 𝑎 a: ∂ 𝑃 ∂ 𝑎 = 2 𝑎 + 𝑏 − 20 ∂a ∂P ​ =2a+b−20 Đạo hàm riêng của 𝑃 P theo 𝑏 b: ∂ 𝑃 ∂ 𝑏 = 2 𝑏 + 𝑎 − 19 ∂b ∂P ​ =2b+a−19 Bước 3: Giải hệ phương trình đạo hàm Để tìm các giá trị cực trị (giá trị nhỏ nhất hoặc lớn nhất của 𝑃 P), ta giải hệ phương trình đạo hàm: { 2 𝑎 + 𝑏 − 20 = 0 𝑎 + 2 𝑏 − 19 = 0 { 2a+b−20=0 a+2b−19=0 ​ Từ phương trình đầu tiên: 2 𝑎 + 𝑏 = 20 2a+b=20, ta suy ra: 𝑏 = 20 − 2 𝑎 b=20−2a Thay vào phương trình thứ hai: 𝑎 + 2 ( 20 − 2 𝑎 ) − 19 = 0 a+2(20−2a)−19=0 𝑎 + 40 − 4 𝑎 − 19 = 0 a+40−4a−19=0 − 3 𝑎 + 21 = 0 −3a+21=0 𝑎 = 7 a=7 Thay giá trị 𝑎 = 7 a=7 vào phương trình 𝑏 = 20 − 2 𝑎 b=20−2a: 𝑏 = 20 − 2 × 7 = 6 b=20−2×7=6 Bước 4: Tính giá trị của 𝑃 P Thay 𝑎 = 7 a=7 và 𝑏 = 6 b=6 vào biểu thức 𝑃 P: 𝑃 = 7 2 + 6 2 + 7 × 6 − 20 × 7 − 19 × 6 + 2151 P=7 2 +6 2 +7×6−20×7−19×6+2151 𝑃 = 49 + 36 + 42 − 140 − 114 + 2151 P=49+36+42−140−114+2151 𝑃 = 49 + 36 + 42 − 140 − 114 + 2151 = 2024 P=49+36+42−140−114+2151=2024 Kết luận: Giá trị nhỏ nhất của 𝑃 P là 2024 2024 ​ .

8 tháng 1

A = \(x^2y.xy^2\) + 1

A = \(x^3y^3\) + 1

A = (\(xy\) )\(^3\) + 1

Thay \(x=2;y=2\) vào biểu thức A ta có:

A = (2.2)\(^3\) + 1

A = 4\(^3\) + 1

A = 16 + 1

A = 17

6 tháng 1

Giải:

Số trái cây sầu riêng cửa hàng đã bán được là:

400 x 20 : 100 = 80 (kg)

Kết luận số trái cây sầu riêng cửa hàng đã bán là 80 kg.





5 tháng 1

Các tỉ số theo định lí Thales là:

1; \(\frac{BD}{BA}\) = \(\frac{BE}{AC}\)

2; \(\frac{BD}{DA}\) = \(\frac{BE}{EC}\)

3; \(\frac{DA}{BA}\) = \(\frac{EC}{BC}\)


5 tháng 1

mn giúp e với em quên cách làm rồi


2 tháng 1

BCNN(28; 30; 2)

28 = 2\(^2\).7; 30 = 2.3.5; 2 = 2

BCNN(28; 30; 2) = 2\(^2.3.5.7\) = 420

BCNN(25; 30; 3)

25 = 5\(^2\) ; 30 = 2.3.5; 3 = 3

BCNN(25; 30; 3) = 2.5\(^2\).3 = 150

BCNN(30; 35; 6; 3)

30 = 2.3.5; 35 = 5.7; 6 = 2.3; 3 = 3

BCNN(30; 35; 6; 3) = 2.3.5.7 = 210

28 tháng 12 2024

a; 2x - 8  = 2(x  -4)

b; 4 - 6x = 2(2 - 3x)

c; 4xy - 2y2 = 2y(2x - y)

d; 3x2 - 12  = 3(x2 - 4) = 3(x - 2)(x + 2)

 

28 tháng 12 2024

e; 36x2 - 9y2 

= 9(4x2 - y2)

= 9.(2x - y).(2x + y)ư

f; 6x( x - 1) + 3.(x - 1)

 = 3.(x - 1).(6x + 1)

g; x2 - 4x + 4 - 4y2

= (x2 - 4x + 4 ) - 4y2

= (x - 2)2 - 4y2

= (x - 2 - 2y)(x - 2 + 2y)